TPAMI 2023: MVSS-Net: Multi-View Multi-Scale Supervised Networks for Image Manipulation Detection

Our paper on deep learning based image manipulation detection has been published online as a regular paper in the March 2023 Issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence journal (impact factor: 24.314). Source code is available at https://github.com/dong03/MVSS-Net
As manipulating images by copy-move, splicing and/or inpainting may lead to misinterpretation of the visual content, detecting these sorts of manipulations is crucial for media forensics. Given the variety of possible attacks on the content, devising a generic method is nontrivial. Current deep learning based methods are promising when training and test data are well aligned, but perform poorly on independent tests. Moreover, due to the absence of authentic test images, their image-level detection specificity is in doubt. The key question is how to design and train a deep neural network capable of learning generalizable features sensitive to manipulations in novel data, whilst specific to prevent false alarms on the authentic. We propose multi-view feature learning to jointly exploit tampering boundary artifacts and the noise view of the input image. As both clues are meant to be semantic-agnostic, the learned features are thus generalizable. For effectively learning from authentic images, we train with multi-scale (pixel / edge / image) supervision. We term the new network MVSS-Net and its enhanced version MVSS-Net++. Experiments are conducted in both within-dataset and cross-dataset scenarios, showing that MVSS-Net++ performs the best, and exhibits better robustness against JPEG compression, Gaussian blur and screenshot based image re-capturing.

Chengbo Dong, Xinru Chen, Ruohan Hu, Juan Cao, Xirong Li: MVSS-Net: Multi-View Multi-Scale Supervised Networks for Image Manipulation Detection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.

ICCV2021: Image Manipulation Detection by Multi-View Multi-Scale Supervision

Our ICCV’21 paper on image manipulation detection is online, with code and models released at https://github.com/dong03/MVSS-Net.
Pixel-level manipulation detection results of MVSS-Net in varied setups.
The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Xinru Chen, Chengbo Dong, Jiaqi Ji, Juan Cao, Xirong Li: Image Manipulation Detection by Multi-View Multi-Scale Supervision. In: International Conference on Computer Vision (ICCV) , 2021.