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Abstract

The key challenge of image manipulation detection is
how to learn generalizable features that are sensitive to ma-
nipulations in novel data, whilst specific to prevent false
alarms on authentic images. Current research emphasizes
the sensitivity, with the specificity overlooked. In this pa-
per we address both aspects by multi-view feature learn-
ing and multi-scale supervision. By exploiting noise dis-
tribution and boundary artifact surrounding tampered re-
gions, the former aims to learn semantic-agnostic and thus
more generalizable features. The latter allows us to learn
from authentic images which are nontrivial to be taken into
account by current semantic segmentation network based
methods. Our thoughts are realized by a new network which
we term MVSS-Net. Extensive experiments on five bench-
mark sets justify the viability of MVSS-Net for both pixel-
level and image-level manipulation detection.

1. Introduction

Digital images can now be manipulated with ease and
often in a visually imperceptible manner [11]. Copy-move
(copy and move elements from one region to another region
in a given image), splicing (copy elements from one image
and paste them on another image) and inpainting (removal
of unwanted elements) are three common types of image
manipulation that could lead to misinterpretation of the vi-
sual content [1, 19, 23]. This paper targets at auto-detection
of images subjected to these types of manipulation. We aim
to not only discriminate manipulated images from the au-
thentic, but also pinpoint tampered regions at the pixel level.

Unsurprisingly, the state-of-the-arts are deep learning
based [14, 21, 26, 27, 29], specifically focusing on pixel-
level manipulation detection [21, 26, 29]. With only two
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Figure 1. Image manipulation detection by the state-of-the-
arts. The first three rows are copy-move, splicing and inpainting,
followed by three authentic images (thus with blank mask). Our
model strikes a good balance between sensitivity and specificity.

classes (manipulated versus authentic) in consideration, the
task appears to be a simplified case of image semantic seg-
mentation. However, an off-the-shelf semantic segmenta-
tion network is suboptimal for the task, as it is designed to
capture semantic information, making the network dataset-
dependent and do not generalize. Prior research [29] re-
ports that DeepLabv2 [4] trained on the CASIAv2 dataset
[8] performs well on the CAISAv1 dataset [7] homologous
to CASIAv2, yet performs poorly on the non-homologous
COVER dataset [25]. A similar behavior of FCN [18] is
also observed in this study. Hence, the key question is how
to design and train a deep neural network capable of learn-
ing semantic-agnostic features that are sensitive to manipu-
lations, whilst specific to prevent false alarms?

In order to learn semantic-agnostic features, image con-



Figure 2. Conceptual diagram of the proposed MVSS-Net model. We use the edge-supervised branch and the noise-sensitive branch to
learn semantic-agnostic features for manipulation detection, and multi-scale supervision to strike a balance between model sensitivity and
specificity. Non-trainable layers such as sigmoid (σ) and global max pooling (GMP) are shown in gray.

tent has to be suppressed. Depending on at what stage
the suppression occurs, we categorize existing methods into
two groups, i.e. noise-view methods [14, 16, 26, 27, 30] and
edge-supervised methods [21, 29]. Given the hypothesis
that novel elements introduced by slicing and/or inpainting
differ from the authentic part in terms of their noise dis-
tributions, the first group of methods aim to exploit such
discrepancy. The noise map of an input image, generated
either by pre-defined high-pass filters [9] or by their train-
able counterparts [2, 16], is fed into a deep network, either
alone [16, 27] or together with the input image [14, 26, 30].
Note that the methods are ineffective for detecting copy-
move which introduces no new element. The second group
of methods concentrate on finding boundary artifact as ma-
nipulation trace around a tampered region, implemented by
adding an auxiliary branch to reconstruct the region’s edge
[21,29]. Note that the prior art [29] uniformly concatenates
features from different layers of the backbone as input of the
auxiliary branch. As such, there is a risk that deeper-layer
features, which are responsible for manipulation detection,
remain semantic-aware and thus not generalizable.

To measure a model’s generalizability, a common eval-
uation protocol [14, 21, 26, 29] is to first train the model on
a public dataset, say CASIAv2 [8], and then test it on other
public datasets such as NIST16 [12], Columbia [13], and
CASIAv1 [7]. To our surprise, however, the evaluation is
performed exclusively on manipulated images, with met-
rics w.r.t pixel-level manipulation detection reported. The
specificity of the model, which reveals how it handles au-
thentic images and is thus crucial for real-world usability, is
ignored. As shown in Fig. 1, their serious false alarm over

authentic images leads to unavailability in practical work.
In fact, as current methods [14, 21, 26] mainly use pixel-
wise segmentation losses to which an authentic example can
contribute is marginal, it is nontrivial for these methods to
improve their specificity by learning from the authentic.

Inspired by the Border Network [28], which aggregates
features progressively to predict object boundaries, and Le-
sionNet [24] that incorporates an image classification loss
for retinal lesion segmentation, we propose multi-view fea-
ture learning with multi-scale supervision for image manip-
ulation detection. To the best of our knowledge (Table 1),
we are the first to jointly exploit the noise view and the
boundary artifact to learn manipulation detection features.
Moreover, such a joint exploitation is nontrivial. To com-
bine the best of the two worlds, new network structures are
needed. Our contributions are as follows:
•We propose MVSS-Net as a new network for image manip-
ulation detection. As shown in Fig. 2, MVSS-Net contains
novel elements designed for learning semantic-agnostic and
thus more generalizable features.
• We train MVSS-Net with multi-scale supervision, allow-
ing us to learn from authentic images, which are ignored
by the prior art, and consequently improve the model speci-
ficity substantially.
• Extensive experiments on two training sets and five test
sets show that MVSS-Net compares favorably against the
state-of-the-art.

2. Related Work
This paper is inspired by a number of recent works that

made novel attempts to learn semantic-agnostic features for



Methods Views Backbone Scales of Supervision
RGB Noise Fusion pixel edge image

Bappy et al. 2017, J-LSTM [1] + - - Patch-LSTM + - -
Salloum et al. 2017, MFCN [21] + - - FCN + + -
Zhou et al. 2020, GSR-Net [29] + - - Deeplabv2 + + -
Li & Huang 2019, HP-FCN [16] - High-pass filters - FCN + - -
Yang et al. 2020, CR-CNN [27] - BayarConv2D - Mask R-CNN + - -

Zhou et al. 2018, RGB-N [30] + SRM filter
late fusion

(bilinear pooling)
Faster R-CNN * - -

Wu et al. 2019, ManTra-Net [26] +
SRM filter,

BayarConv2D
early fusion

(feature concatenation)
Wider VGG + - -

Hu et al. 2020, SPAN [14] +
SRM filter

BayarConv2D
early fusion

(feature concatenation)
Wider VGG + - -

MVSS-Net(This paper) + BayarConv2D
late fusion

(dual attention)
FCN + + +

Table 1. A taxonomy of the state-of-the-art for image manipulation detection. Note that edge and image labels used in this work are
automatically extracted from pixel-level annotations. So our multi-scale supervision does not use extra manual annotation.

image manipulation detection, see Table 1. In what follows,
we describe in brief how these attempts are implemented
and explain our novelties accordingly. We focus on deep
learning approaches to copy-move / splicing / inpainting de-
tection. For the detection of low-level manipulations such
as Gaussian Blur and JPEG compression, we refer to [2].

In order to suppress the content information, Li and
Huang [16] propose to implement an FCN’s first convolu-
tional layer with trainable high-pass filters and apply their
HP-FCN for inpainting detection. Yang et al. use Ba-
yarConv as the initial convolution layer of their CR-CNN
[27]. Although such constrained convolutional layers are
helpful for extracting noise information, using them alone
brings in the risk of losing other useful information in the
original RGB input. Hence, we see an increasing number of
works on exploiting information from both the RGB view
and the noise view [14, 26, 30]. Zhou et al. [30] develop a
two-stream Faster R-CNN, coined RGB-N, which takes as
input the RGB image and its noise counterpart generated by
the SRM filter [9]. Wu et al. [26] and Hu et al. [14] use both
BayarConv and SRM. Given features from distinct views,
the need for feature fusion is on. Feature concatenation
at an early stage is adopted by [14, 26]. Our MVSS-Net is
more close to RGB-N as both perform feature fusion at the
late stage. However, different from the non-trainable bilin-
ear pooling used in RGB-N, Dual Attention used in MVSS-
Net is trainable and thus more selective.

As manipulating a specific region in a given image in-
evitably leaves traces between the tampered region and its
surrounding, how to exploit such edge artifact also matters
for manipulation detection. Salloum et al. develop a multi-
task FCN to symmetrically predict a tampered area and its
boundary [21]. In a more recent work [29], Zhou et al. in-
troduce an edge detection and refinement branch which ac-
cepts features from different levels. Given that region seg-
mentation and edge detection are intrinsically two distinct
tasks, the challenge lies in how to strike a proper balance

between the two. Directly using deeper features for edge
detection as done in [21] has the risk of affecting the main
task of manipulation segmentation, while putting all fea-
tures together as used in [29] may let the deeper features be
ignored by the edge branch. Our MVSS-Net has an edge-
supervised branch that effectively resolves these issues.

Last but not least, we observe that the specificity of an
image manipulation detector, i.e. how it responses to au-
thentic images, is seldom reported. In fact, the mainstream
solutions are developed within an image semantic segmen-
tation network. Naturally, they are trained and also evalu-
ated on manipulated images in the context of manipulation
segmentation [29]. The absence of authentic images both in
the training and test stages naturally raises concerns regard-
ing the specificity of the detector. In this paper we make a
novel attempt to include authentic images for training and
test, an important step towards real-world deployment.

3. Proposed Model

Given an RGB image x of size W × H × 3, we aim
for a multi-head deep network G that not only determines
whether the image has been manipulated, but also pinpoints
its manipulated pixels. Let G(x) be the network-estimated
probability of the image being manipulated. In a simi-
lar manner we define G(xi) as pixel-wise probability, with
i = 1, . . . ,W ×H . Accordingly, we denote a full-size seg-
mentation map as {G(xi)}. As the image-level decision is
naturally subject to pixel-level evidence, we obtainG(x) by
Global Max Pooling (GMP) over the segmentation map, i.e.

G(x)← GMP ({G(xi)}) . (1)

In order to extract generalizable manipulation detection
features, we present a new network that accepts both RGB
and noise views of the input image. To strike a proper bal-
ance between detection sensitivity and specificity, the multi-



view feature learning process is jointly supervised by anno-
tations of three scales, i.e. pixel, edge and image.

3.1. Multi-View Feature Learning

As shown in Fig. 2, MVSS-Net consists of two branches,
with ResNet-50 as their backbones. The edge-supervised
branch (ESB) at the top is specifically designed to exploit
subtle boundary artifact around tampered regions, whilst the
noise-sensitive branch (NSB) at the bottom aims to capture
the inconsistency between tampered and authentic regions.
Both clues are meant to be semantic-agnostic.

3.1.1 Edge-Supervised Branch

Ideally, with edge supervision, we hope the response area
of the network will be more concentrated on tampered re-
gions. Designing such an edge-supervised network is non-
trivial. As noted in Section 2, the main challenge is how to
construct an appropriate input for the edge detection head.
On one hand, directly using features from the last ResNet
block is problematic, as this will enforce the deep features to
capture low-level edge patterns and consequently affect the
main task of manipulation segmentation. While on the other
hand, using features from the initial blocks is also question-
able, as subtle edge patterns contained in these shallow fea-
tures can vanish with ease after multiple deep convolutions.
A joint use of both shallow and deep features is thus neces-
sary. However, we argue that simple feature concatenation
as previously used in [29] is suboptimal, as the features are
mixed and there is no guarantee that the deeper features will
receive adequate supervision from the edge head. To con-
quer the challenge, we propose to construct the input of the
edge head in a shallow-to-deep manner.

As illustrated in Fig. 2, features from different ResNet
blocks are combined in a progressive manner for manipula-
tion edge detection. In order to enhance edge-related pat-
terns, we introduce a Sobel layer, see Fig. 3(a). Features
from the i-th block first go through the Sobel layer followed
by an edge residual block (ERB), see Fig. 3(b), before they
are combined (by summation) with their counterparts from
the next block. To prevent the effect of accumulation, the
combined features go through another ERB (top in Fig. 2)
before the next round of feature combination. We believe
such a mechanism helps prevent extreme cases in which
deeper features are over-supervised or fully ignored by the
edge head. By visualizing feature maps of the last ResNet
block in Fig. 4, we observe that the proposed ESB indeed
produces a more focused response near tampered regions.

The output of ESB has two parts: feature maps from
the last ResNet block, denoted as {fesb,1, . . . , fesb,k}, to
be used for the main task, and the predicted manipulation
edge map, denoted as {Gedge(xi)}, obtained by transform-
ing the output of the last ERB with a sigmoid (σ) layer. The

(a) Sobel Layer

(b) Edge Residual Block (ERB)

Figure 3. Diagrams of (a) Sobel layer and (b) edge residual
block, used in ESB for manipulation edge detection.

Figure 4. Visualization of averaged feature maps of the last
ResNet block, brighter color indicating a higher response. Ma-
nipulation from the top to bottom is inpainting, copy-move and
splicing. Read from the third column are w/o edge, i.e. ResNet
without any edge residual block, GSR-Net, i.e. ResNet with the
GSR-Net alike edge branch, and the proposed ESB, which pro-
duces a more focused response near tampered regions.

data-flow of this branch is conceptually expressed by Eq. 2,

[fesb,1,. . . , fesb,k]
{Gedge (xi)}

}
←ERB-ResNet(x). (2)

3.1.2 Noise-Sensitive Branch

In order to fully exploit the noise view, we build a noise-
sensitive branch (NSB) parallel to ESB. NSB is imple-
mented as a standard FCN (another ResNet-50 as its back-
bone). Regarding the choice of noise extraction, we adopt
BayarConv [2], which is found to be better than the SRM



filter [27]. The output of this branch is an array of k feature
maps from the last ResNet block of its backbone, i.e.

{fnsb,1, . . . , fnsb,k} ← ResNet(BayarConv(x)). (3)

3.1.3 Branch Fusion by Dual Attention

Given two arrays of feature maps {fesb,1, . . . , fesb,k} and
{fnsb,1, . . . , fnsb,k} from ESB and NSB, we propose to
fuse them by a trainable Dual Attention (DA) module [10].
This is new, because previous work [30] uses bilinear pool-
ing for feature fusion, which is non-trainable.

The DA module has two attention mechanisms working
in parallel: channel attention (CA) and position attention
(PA), see Fig. 5. CA associates channel-wise features to
selectively emphasize interdependent channel feature maps.
Meanwhile, PA selectively updates features at each position
by a weighted sum of the features at all positions. The out-
puts of CA and PA are summed up, and transformed into
a feature map of size W

16 ×
H
16 , denoted as {G′

(xi)}, by a
1×1 convolution. With parameter-free bilinear upsampling
followed by an element-wise sigmoid function, {G′

(xi)} is
transformed into the final segmentation map {G(xi)}. Fu-
sion by dual attention is conceptually expressed as{
{G′

(xi)}←DA([fesb,1,. . .,fesb,k,fnsb,1, . . . , fnsb,k]),

{G(xi)}←σ(bilinear-upsampling({G′
(xi)})).

(4)

Figure 5. Dual Attention, with its channel attention module
shown in blue and its position attention module shown in green.

3.2. Multi-Scale Supervision

We consider losses at three scales, each with its own tar-
get, i.e. a pixel-scale loss for improving the model’s sen-
sitivity for pixel-level manipulation detection, an edge loss
for learning semantic-agnostic features and an image-scale
loss for improving the model’s specificity for image-level
manipulation detection.

Pixel-scale loss. As manipulated pixels are typically in
minority in a given image, we use the Dice loss, found to be

effective for learning from extremely imbalanced data [24]:

lossseg(x) = 1−
2 ·
∑W×H

i=1 G(xi) · yi∑W×H
i=1 G2(xi) +

∑W×H
i=1 y2i

, (5)

where yi ∈ {0, 1} is a binary label indicating whether the
i-th pixel is manipulated.

Edge loss. As pixels of an edge are overwhelmed by
non-edge pixels, we again use the Dice loss for manipula-
tion edge detection, denoted as lossedg . Since manipulation
edge detection is an auxiliary task, we do not compute the
lossedg at the full size of W ×H . Instead, the loss is com-
puted at a smaller size of W

4 ×
H
4 , see Fig. 2. This strat-

egy reduces computational cost during training, and in the
meanwhile, improves the performance slightly.

Image-scale loss. In order to reduce false alarms, au-
thentic images have to be taken into account in the train-
ing stage. This is however nontrivial for the current works
[16,21,26,29] as they all rely on segmentation losses. Con-
sider the widely used binary cross-entropy (BCE) loss for
instance. An authentic image with a small percent of its
pixels misclassified contributes marginally to the BCE loss,
making it difficult to effectively reduce false alarms. Also
note that the Dice loss cannot handle the authentic image
by definition. Therefore, an image-scale loss is needed. We
adopt the image-scale BCE loss:

lossclf (x) = −(y · logG(x)+(1−y) · log(1−G(x))) (6)

where y = max({yi}).
Combined loss. We use a convex combination of the

three losses:

Loss = α · lossseg+β · lossclf +(1−α−β) · lossedg (7)

where α, β ∈ (0, 1) are weights. Note that authentic images
are only used to compute lossclf .

4. Experiments
4.1. Experimental Setup

Datasets. For the ease of a head-to-head comparison
with the state-of-the-art, we adopt CASIAv2 [8] for train-
ing and COVER [25], Columbia [13], NIST16 [12] and
CASIAv1 [7] for testing. Meanwhile, we notice DEFACTO
[19], a recently released large-scale dataset, containing
149k images sampled from MS-COCO [17] and auto-
manipulated by copy-move, splicing and inpainting. Con-
sidering the challenging nature of DEFACTO, we choose
to perform our ablation study on this new set. As the set
has no authentic images, we construct a training set termed
DEFACTO-84k, by randomly sampling 64k positive images
from DEFACTO and 20k negative images from MS-COCO.
In a similar manner, we build a test set termed DEFACTO-
12k, by randomly sampling 6k positive images from the



remaining part of DEFACTO and 6k negatives from MS-
COCO. Note that to avoid any data leakage, for manipulated
images used for training (test), their source images are not
included in the test (training) set. In total, our experiments
use two training sets and five test sets, see Table 2.

Dataset Negative Positive cpmv spli inpa
Training
DEFACTO-84k [19] 20,000 64,417 12,777 34,133 17,507
CASIAv2 [8] 7,491 5,063 3,235 1,828 0
Test
COVER [25] 100 100 100 0 0
Columbia [13] 183 180 0 180 0
NIST16 [12] 0 564 68 288 208
CASIAv1 [7] 800 920 459 461 0
DEFACTO-12k [19] 6,000 6,000 2,000 2,000 2,000

Table 2. Two training sets and five test sets in our experiments.
DEFACTO-84k and DEFACTO-12k are used for training and test
in the ablation study (Section 4.2), while for the SOTA comparison
(Section 4.3) we train on CASIAv2 and evaluate on all test sets.

Evaluation Criteria. For pixel-level manipulation de-
tection, following previous works [21, 29, 30], we compute
pixel-level precision and recall, and report their F1. For
image-level manipulation detection, in order to measure the
miss detection rate and false alarm rate, we report sensitiv-
ity, specificity and their F1. AUC, as a decision-threshold-
free metric, is also reported. Authentic images per test set
are only used for image-level evaluation. For both pixel-
level and image-level F1 computation, the default threshold
is 0.5, unless otherwise stated.

The overall performance is measured by Com-F1, de-
fined as the harmonic mean of pixel-level and image-level
F1. Com-F1 is sensitive to the lowest value of pixel-F1 and
image-F1. In particular, it scores 0 when either pixel-F1 or
image-F1 is 0, which does not hold for the arithmetic mean.

Implementation. MVSS-Net is implemented in PyTorch
and trained on an NVIDIA Tesla V100 GPU. The input size
is 512×512. The two ResNet-50 used in ESB and NSB are
initialized with ImageNet-pretrained counterparts. We use
an Adam [15] optimizer with a learning rate periodically
decays from 10−4 to 10−7. We set the two weights in the
combined loss as α = 0.16 and β = 0.04, according to the
model performance on a held-out validation set from DE-
FACTO. We apply regular data augmentation for training,
including flipping, blurring, compression and naive manip-
ulations either by cropping and pasting a squared area or
using built-in OpenCV inpainting functions [3, 22].

4.2. Ablation Study

For revealing the influence of the individual components,
we evaluate the performance of the proposed model in var-
ied setups with the components added progressively.

We depart from FCN-16 without multi-view multi-
scale supervision. Recall that we use a DA module for

branch fusion. So for a fair comparison, we adopt FCN-
16 with DA, making it essentially an implementation of
DANet [10]. The improved FCN-16 scores better than its
standard counterpart, e.g. UNet [20], DeepLabv3 [5] and
DeepLabv3+ [6], see the supplement. This competitive
baseline is referred to as Seg in Table 3.

Influence of the image classification loss. Comparing
Seg+Clf and Seg, we see a clear increase in specificity and
a clear drop in sensitivity, suggesting that adding lossclf
makes the model more conservative for reporting manipu-
lation. This change is not only confirmed by lower pixel-
level performance, but is also observed in the fourth col-
umn of Fig. 6, showing that manipulated areas predicted by
Seg+Clf are much reduced.

Figure 6. Pixel-level manipulation detection results of MVSS-
Net in varied setups. The test image in the last row is authentic.

Influence of NSB. Since Seg+Clf+N is obtained by
adding NSB into Seg+Clf , its better performance verifies
the effectiveness of NSB for improving manipulation de-
tection at both pixel-level and image-level.

Influence of ESB. The better performance of
Seg+Clf+E against Seg+Clf justifies the effectiveness
of ESB. Seg+Clf+E/s is obtained by removing the Sobel
operation from Seg+Clf+E, so its performance degener-
ation in particular on copy-move detection (from 0.405
to 0.382, cmpv in Table 3) indicates the necessity of this
operation.

ESB versus GSR-Net. Seg+Clf+G is obtained by
replacing our ESB with the edge branch of GSR-Net.
The overall performance of Seg+Clf+G is lower than
Seg+Clf+E. Moreover, there is a larger performance gap
on cmpv (ESB of 0.405 versus GSR-Net of 0.363). The
results clearly demonstrate the superiority of the proposed
ESB over the prior art.

Influence of two branch fusion. The full setup, with
ESB and NSB fused by dual attention, performs the best,



Setup Component Pixel-level manipulation detection (F1) Image-level manipulation detection Com-F1
loss ESB NSB cpmv. spli. inpa. MEAN AUC Sen. Spe. F1

Seg - - - 0.453 0.722 0.463 0.546 0.840 0.827 0.620 0.709 0.617
Seg+Clf + - - 0.341 0.673 0.376 0.463 0.858 0.768 0.778 0.773 0.579
Seg+Clf+N + - + 0.393 0.706 0.426 0.508 0.871 0.763 0.821 0.791 0.619
Seg+Clf+E + + - 0.405 0.715 0.435 0.518 0.870 0.773 0.811 0.792 0.626
Seg+Clf+E/s + w/o sobel - 0.382 0.710 0.422 0.505 0.869 0.792 0.789 0.790 0.616
Seg+Clf+G + GSR-Net - 0.363 0.714 0.421 0.499 0.864 0.813 0.779 0.796 0.613
Full setup + + + 0.446 0.714 0.455 0.538 0.886 0.797 0.802 0.799 0.643
Ensemble(N, E) + + + 0.384 0.708 0.437 0.510 0.878 0.731 0.876 0.797 0.622

Table 3. Ablation study of MVSS-Net. Training: DEFACTO-84k. Test: DEFACTO-12k. Copy-move, splicing and inpainting are
shortened as cmpv, spli and inpa, respectively. Best number per column is shown in bold. The top performance of the full setup justifies
the necessity of the individual components used in MVSS-Net.

showing the complementarity of the individual components.
To further justify the necessity of our dual attention based
fusion, we make an alternative solution which ensembles
Seg+Clf+N and Seg+Clf+E by model averaging, refereed
to as Ensemble(N,E). The full setup is better than Ensem-
ble(N,E), showing the advantage of our fusion method1.

Fig. 6 shows some qualitative results. From the left to
right, the results demonstrate how MVSS-Net strikes a good
balance between sensitivity and specificity. Note that the
best pixel-level performance of FCN is due to the fact that
the training and test sets are homologous. Next, we evaluate
the generalizability of FCN and MVSS-Net.

4.3. Comparison with State-of-the-art

Baselines. For a fair and reproducible comparison, we
have to be selective, choosing the state-of-the-art that meets
one of the following three criteria: 1) pre-trained models
released by paper authors, 2) source code publicly avail-
able, or 3) following a common evaluation protocol where
CASIAv2 is used for training and other public datasets are
used for testing. Accordingly, we compile a list of six pub-
lished baselines as follows:
• Models available: HP-FCN [16], trained on a private set
of inpainted images2, ManTra-Net [26], trained on a private
set of millions of manipulated images3, and CR-CNN [27],
trained on CASIAv24. We use these models directly.
• Code available: GSR-Net [29], which we train using
author-provided code5. We cite their results where appro-
priate and use our re-trained model only when necessary.
• Same evaluation protocol: MFCN [21], RGB-N [30] with
numbers quoted from the same team [29].

We re-train FCN (Seg) and MVSS-Net(full setup) from
scratch on CASIAv2.

1Comparison to fusion by bilinear pooling is in the supplement.
2https://github.com/lihaod/Deep_inpainting_

localization
3https://github.com/ISICV/ManTraNet
4https://github.com/HuizhouLi/Constrained-R-CNN
5https://github.com/pengzhou1108/GSRNet

(a) Performance curves w.r.t. JPEG compression

(b) Performance curves w.t.r. Gaussian Blurs

Figure 7. Robustness evaluation against JPEG compression
and Gaussian Blurs on CASIAv1.

Pixel-level manipulation detection. The performance
of distinct models is given in Table 4. MVSS-Net is the best
in terms of overall performance. We attribute the clearly
better performance of ManTra-Net on DEFACTO-12k to its
large-scale training data, which was also originated from
MS-COCO as DEFACTO-12k. As MVSS-Net is derived
from FCN, its superior performance in this cross-dataset
setting justifies its better generalizability.

As HP-FCN is specially designed for inpainting detec-
tion, we narrow down the comparison to detecting the in-
painting subsets in NIST16 and DEFACTO-12k. Again,
MVSS-Net outperforms HP-FCN: 0.565 versus 0.284 on
NIST16 and 0.391 versus 0.106 on DEFACTO-12k.



Method Optimal threshold per model & testset Fixed threshold (0.5)
NIST Columbia CASIAv1 COVER DEFACTO-12k MEAN NIST Columbia CASIAv1 COVER DEFACTO-12k MEAN

MFCN [21] 0.422 0.612 0.541 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a
RGB-N [30] n.a. n.a. 0.408 0.379 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a
HP-FCN [16] 0.360 0.471 0.214 0.199 0.136 0.276 0.121 0.067 0.154 0.003 0.055 0.080
ManTra-Net [26] 0.455 0.709 0.692 0.772 0.618 0.649 0.000 0.364 0.155 0.286 0.155 0.192
CR-CNN [27] 0.428 0.704 0.662 0.470 0.340 0.521 0.238 0.436 0.405 0.291 0.132 0.300
GSR-Net [29] 0.456 0.622 0.574 0.489 0.379 0.504 0.283 0.613 0.387 0.285 0.051 0.324

FCN 0.507 0.586 0.742 0.573 0.401 0.562 0.167 0.223 0.441 0.199 0.130 0.232
MVSS-Net 0.737 0.703 0.753 0.824 0.572 0.718 0.292 0.638 0.452 0.453 0.137 0.394

Table 4. Performance of pixel-level manipulation detection. Best result per test set is shown in bold. All the models are trained on
CASIAv2, except for ManTra-Net and HP-FCN.

Method Columbia CASIAv1 COVER DEFACTO-12k
AUC Sen. Spe. F1 AUC Sen. Spe. F1 AUC Sen. Spe. F1 AUC Sen. Spe. F1

ManrTra-Net [26] 0.701 1.000 0.000 0.000 0.141 1.000 0.000 0.000 0.491 1.000 0.000 0.000 0.543 1.000 0.000 0.000
CR-CNN [27] 0.783 0.961 0.246 0.392 0.766 0.930 0.224 0.361 0.566 0.967 0.070 0.131 0.567 0.774 0.267 0.397
GSR-Net [29] 0.502 1.000 0.011 0.022 0.502 0.994 0.011 0.022 0.515 1.000 0.000 0.000 0.456 0.914 0.001 0.002

FCN 0.762 0.950 0.322 0.481 0.796 0.717 0.844 0.775 0.541 0.900 0.100 0.180 0.551 0.711 0.338 0.458
MVSS-Net 0.980 0.669 1.000 0.802 0.839 0.615 0.969 0.752 0.731 0.940 0.140 0.244 0.573 0.817 0.268 0.404

Table 5. Performance of image-level manipulation detection on Columbia, CASIAv1, COVER and DEFACTO-12k. Sen.: sensitivity.
Spe.: specificity. NIST16, which has no authentic images, is excluded. The default decision threshold of 0.5 is used for all models.

Method Columbia CASIAv1 COVER DEFACTO-12k
ManrTra-Net [26] 0.000 0.000 0.000 0.000
CR-CNN [27] 0.413 0.382 0.181 0.198
GSR-Net [29] 0.042 0.042 0.000 0.004
FCN 0.305 0.562 0.189 0.203
MVSS-Net 0.711 0.565 0.317 0.205

Table 6. Com-F1, the harmonic mean of pixel-level F1 and
image-level F1, on four test sets.

Image-level manipulation detection. Table 5 shows
the performance of distinct models, all using the default
decision threshold of 0.5. MVSS-Net is again the top per-
former. With its capability of learning from authentic im-
ages, MVSS-Net obtains higher specificity (and thus lower
false alarm rate) on most test sets. Our model also has the
best AUC scores, meaning it is better than the baselines on
a wide range of operation points.

The overall performance on both pixel-level and image-
level manipulation detection is provided in Table 6.

Robustness evaluation. JPEG compression and Gaus-
sian blur are separately applied on CASIAv1. ManTra-Net
used a wide range of data augmentations including com-
pression, while CR-CNN and GSR-Net did not use such
data augmentation. So for a more fair comparison, we also
train MVSS-Net with compression and blurring excluded
from data augmentation, denoted as MVSS-Net (w/o aug).
Performance curves in Fig. 7 show better robustness of
MVSS-Net and MVSS-Net (w/o aug).

Efficiency test. We measure the inference efficiency in
terms of frames per second (FPS) . Tested on NVIDIA Tesla

V100 GPU, CR-CNN, ManTra-Net and GSR-Net run at
FPS of 3.1, 2.8 and 31.7, respectively. MVSS-Net runs at
FPS of 20.1, sufficient for real-time application.

5. Conclusions
Our image manipulation detection experiments on five

benchmark sets allow us to draw the following conclu-
sions. For learning semantic-agnostic features, both noise
and edge information are helpful, whilst the latter is bet-
ter when used alone. For exploiting the edge information,
our proposed edge-supervised branch (ESB) is more effec-
tive than the previously used feature concatenation. ESB
steers the network to be more concentrated on tampered
regions. Regarding the specificity of manipulation detec-
tion, we empirically show that the state-of-the-arts suffer
from poor specificity. The inclusion of the image classi-
fication loss improves the specificity, yet at the cost of a
clear performance drop for pixel-level manipulation detec-
tion. Multi-view feature learning has to be used together
with multi-scale supervision. The resultant MVSS-Net is a
new state-of-the-art for image manipulation detection.
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