MM2019: W2VV++: Fully Deep Learning for Ad-hoc Video Search

Our ACMMM’19 paper on ad-hoc video search is online. Source code and data are accessible via https://github.com/li-xirong/w2vvpp.

Ad-hoc video search (AVS) is an important yet challenging problem in multimedia retrieval. Different from previous concept-based methods, we propose an end-to-end deep learning method for query representation learning. The proposed method requires no concept modeling, matching and selection. The backbone of our method is the proposed W2VV++ model, a super version of Word2VisualVec (W2VV) previously developed for visual-to-text matching. W2VV++ is obtained by tweaking W2VV with a better sentence encoding strategy and an improved triplet ranking loss. With these simple changes, W2VV++ brings in a substantial improvement in performance. As our participation in the TRECVID 2018 AVS task and retrospective experiments on the TRECVID 2016 and 2017 data show, our best single model, with an overall inferred average precision (infAP) of 0.157, outperforms the state-of-the-art. The performance can be further boosted by model ensemble using late average fusion, reaching a higher infAP of 0.163. With W2VV++, we establish a new baseline for ad-hoc video search.

Xirong Li, Chaoxi Xu, Gang Yang, Zhineng Chen, Jianfeng Dong: W2VV++: Fully Deep Learning for Ad-hoc Video Search. In: ACM Multimedia, 2019.

T-MM 2019: COCO-CN for Cross-Lingual Image Tagging, Captioning, and Retrieval

Our work on cross-lingual image tagging, captioning and retrieval has been published as a regular paper in the September issue of the IEEE Transactions on Multimedia (Impact factor: 5.452). Data and code are available at https://github.com/li-xirong/coco-cn.

This paper contributes to cross-lingual image annotation and retrieval in terms of data and baseline methods. We propose COCO-CN, a novel dataset enriching MS-COCO with manually written Chinese sentences and tags. For effective annotation acquisition, we develop a recommendation-assisted collective annotation system, automatically providing an annotator with several tags and sentences deemed to be relevant with respect to the pictorial content. Having 20 342 images annotated with 27 218 Chinese sentences and 70 993 tags, COCO-CN is currently the largest Chinese–English dataset that provides a unified and challenging platform for cross-lingual image tagging, captioning, and retrieval. We develop conceptually simple yet effective methods per task for learning from cross-lingual resources. Extensive experiments on the three tasks justify the viability of the proposed dataset and methods.

Xirong Li, Chaoxi Xu, Xiaoxu Wang, Weiyu Lan, Zhengxiong Jia, Gang Yang, Jieping Xu: COCO-CN for Cross-Lingual Image Tagging, Captioning and Retrieval. In: IEEE Transactions on Multimedia, vol. 21, no. 9, pp. 2347-2360, 2019.