Multiple Instance Learning with Spatial Attention for ROP Case Classification, Instance Selection and Abnormality Localization

Xirong Li^{*}, Wencui Wan⁺, Yang Zhou[‡], Jianchun Zhao[‡], Qijie Wei[‡], Junbo Rong[†], Pengyi Zhou[†] Limin Xu[†], Lijuan Lang[†], Yuying Liu[†], Chengzhi Niu[†], Dayong Ding[‡], and Xuemin Jin[†]

> *Renmin University of China ⁺The First Affiliated Hospital of Zhengzhou University, China [‡]Visionary Intelligence Ltd, Beijing, China

> > ICPR 2020

Jan. 12, 2021

Retinopathy of Prematurity (ROP)

Preterm infants may get high oxygen exposure

• Disorganized growth of retinal vessels

Progression process of ROP

ROP is a leading cause of visual loss in childhood

Source: American Academy of Ophthalmology. https://www.youtube.com/watch?v=OyaUpwSYe0w

ROP Diagnosis and Three Tasks

Requires multiple color fundus images per eye to cover distinct zones of the retina

- Different from retinal disease recognition for adults where a single image is used
- Three questions to answer: whether ROP-positive / which instances / which part?

State-of-the-art

Instance-level classification^[Zhang et al. OMIA 2019]

Pro:

- Instance selection
- Case classification

Con:

- Instance-level annotations are costly
- Abnormality localization not covered

Multiple instance learning [Hu et al. TMI 2018]

Pro:

• Need only case-level annotations

Con:

- Instance selection not covered
- Abnormality localization not covered

4

Challenge We Want to Tackle

How to solve the three tasks related to ROP diagnosis in a unified framework?

• Given only case-level labels

MIL-SA: Part I

Deep MIL with instance attention

• A self-attention module to produce instance-level weights^[IIse et al. ICML 2018]

MIL-SA: Part II

Deep MIL with pixel-level spatial attention

- Enforce the network to make decision based on few selected regions
- Activation function: ReLU is better than the commonly used sigmoid

MIL-SA: Part I + Part II

One network for all

- End-to-end
- Learn only from caselevel annotations

Evaluation

Data

Data split	No. of cases		No. of instances		No. of instances with specific lesions			
	Positives	Negatives	Positives	Negatives	DL	ridge	EFP	VDT
training	859	1,014	2,599	6,995	748	980	458	1,086
validation	51	112	251	488	31	75	124	135
test	41	109	191	529	25	73	73	90

DL: Demarcation Line

EFP: Extraretinal Fibrovascular Proliferation VDT: Vascular Dilatation and Tortuosity

- Expert-labeled 2,186 cases and 11,053 image instances
- Instance-level and region-level annotations are merely used for evaluation

Baselines

- MIL-max: MIL with max pooling
- MIL-att: MIL with instance attention

	Case classification	Instance selection	Abnormality localization	
MIL-max		× (fixed with Grad-CAM)		
MIL-att	\checkmark	\checkmark	imes (fixed with Grad-CAM)	

Experiment 1. ROP Case Classification

Model	Sensitivity	Specificity	F1	Accuracy	AUC
MIL-max [6]	0.9512	0.9083	0.9292	0.9200	0.9758
MIL-att [20]	0.9512	0.9358	0.9434	0.9400	0.9655
proposed MIL-SA	0.9268	0.9725	0.9491	0.9600	0.9895

The proposed MIL-SA outperforms the baseline in terms of F1, Accuracy and AUC.

Experiment 2. Instance Selection

Metric: Rank-based Average Precision (AP)

	Overall	Range of the positive rate per case				
	Overan	(0,0.3)	$\left[0.3, 0.5\right)$	[0.5, 0.7)	[0.7, 1]	
Case number (percentage)	41 (100%)	1 (2.4%)	4 (9.8%)	8 (19.5%)	28 (68.3%)	
Models:						
MIL-max + Grad-CAM	0.8991	0.5833	0.8833	0.8534	0.9257	
MIL-att	0.9694	1.0	0.9375	0.9172	0.9877	
proposed MIL-SA	0.9811	1.0	1.0	0.9302	0.9922	

MIL-SA shows advantages especially for cases with lower positive rates.

Experiment 3. Abnormality Localization

Model	Overall	DL	ridge	EFP	VDT
MIL-max + Grad-CAM	0.2594	0.2489	0.2942	0.3562	0.2258
MIL-att + Grad-CAM	0.2956	0.2853	0.3573	0.3879	0.2046
proposed MIL-SA	0.3615	0.3814	0.4023	0.4621	0.2374

Metric: Intersection over Union (IoU)

DL: demarcation line EFP: extraretinal fibrovascular proliferation VDT: vascular dilatation and tortuosity

MIL-SA localizes abnormal regions more accurately.

Abnormality Localization: A Close-up View

Take-Home Messages

MIL-SA as the first deep network to achieve three tasks for ROP diagnosis, given only case-level annotations

Promising performance for automated ROP diagnosis

- Case classification -> AUC of 0.9895
- Instance selection -> AP of 0.9811
- Abnormality localization -> IoU of 0.3615 (much room for future improvement)

contact: xirong@ruc.edu.cn