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SEA: Sentence Encoder Assembly for Video
Retrieval by Textual Queries
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Abstract—Retrieving unlabeled videos by textual queries,
known as Ad-hoc Video Search (AVS), is a core theme in multi-
media data management and retrieval. The success of AVS counts
on cross-modal representation learning that encodes both query
sentences and videos into common spaces for semantic similarity
computation. Inspired by the initial success of previously few
works in combining multiple sentence encoders, this paper takes
a step forward by developing a new and general method for
effectively exploiting diverse sentence encoders. The novelty of
the proposed method, which we term Sentence Encoder Assembly
(SEA), is two-fold. First, different from prior art that use
only a single common space, SEA supports text-video matching
in multiple encoder-specific common spaces. Such a property
prevents the matching from being dominated by a specific
encoder that produces an encoding vector much longer than other
encoders. Second, in order to explore complementarities among
the individual common spaces, we propose multi-space multi-loss
learning. As extensive experiments on four benchmarks (MSR-
VTT, TRECVID AVS 2016-2019, TGIF and MSVD) show, SEA
surpasses the state-of-the-art. In addition, SEA is extremely ease
to implement. All this makes SEA an appealing solution for AVS
and promising for continuously advancing the task by harvesting
new sentence encoders.

Index Terms—Ad-hoc video search, cross-modal representation
learning, sentence encoder assembly, multiple space learning

I. INTRODUCTION

V IDEO is arguably the most engaging type of digital
content in our society. Research related to video content

understanding and retrieval is essential for multimedia data
management and retrieval. On one hand, common users have
been well educated by web search giants such as Google and
Baidu to express their information need in textual queries.
While on the other hand, there is an increasing amount
of videos lacking reliable annotations or even completely
unlabeled. This paper targets at the challenging problem of ad-
hoc video search (AVS), which is to search on many unlabeled
videos for user queries expressed exclusively by a phrase
or a natural-language sentence and provided on the fly. The
complexity of queries varies, ranging from specific objects,
e.g., “a sewing machine”, to multi-object events occurred in
specific scenes, e.g., “one or more people eating food at a
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table indoors”, see Fig. 1. A cross-modal similarity model that
effectively computes the semantic relevance of the unlabeled
videos with respect to a given query is crucial. Also, due to the
ad-hoc nature of the query, the model has to be generalizable
to handle novel queries unseen when the model is built.

For building such a model, both queries and videos have
to be encoded into real-valued vectors via cross-modal repre-
sentation learning. Earlier efforts struggle to detect seman-
tic concepts from the two modalities and use the detected
concepts as an intermediate representation [6]–[11]. Now, it
is becoming increasingly evident that learning cross-modal
representations in an end-to-end and concept-free manner is
preferred, as manifested via major benchmarks for the AVS
task including TRECVID [12]–[14] and MSR-VTT [15]–[17].

We concentrate on end-to-end query representation learn-
ing, an essential component for AVS. Typically, the component
is composed of a sentence encoder that vectorizes a textual
query into a constant-sized vector and a feed-forward neu-
ral network that projects the vector into a common latent
space [12], [15], [18], [19]. Varied types of sentence encoders
have been investigated in the growing literature. The vanilla
Bag-of-Words (BoW) model is employed by [12], [14], [20],
with word2vec (w2v) in [12], [21], GRU / bi-GRU in [12],
[14], [15], [22], NetVLAD in [13], [16], and BERT in [17],
[23]. While the existing works mainly count on a single sen-
tence encoder, the importance of exploiting multiple sentence
encoders for addressing ad-hoc queries has been recognized
by few recent works [12]–[14]. The W2VV++ model proposed
by Li et al. [12] processes a given query by three encoders,
i.e., BoW, w2v and GRU, in parallel, and then merges the three
encoding results by vector concatenation. Dong et al. [14]
and their follow-up [13], [24] develop multi-level encoding,
where specific sentence encoders are selectively used at dis-
tinct levels. Again, vector concatenation is used to combine
encodings from the multiple levels. Despite their state-of-the-
art performance, we argue that such a concatenation-based
method is suboptimal due to the following two reasons. First,
the overall encoding could be easily dominated by a specific
encoder that produces an encoding vector much longer than
the others. For instance, the size of a BoW vector goes up to
ten thousand with ease, while encodings of word2vec, GRU or
BERT are more compact, with a typical size of a few hundreds.
Second, varied encodings by distinct encoders are fed as a
whole into the subsequent feed-forward network, meaning
the exploration of complementarities among the encoders is
limited to a single common space.

In this paper we advance AVS with the following contribu-
tions:
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a person holding a tool and cutting something

a man and a woman hugging each other

a person wearing shorts outdoors

coral reef underwater

one or more people eating food at a table indoors

a sewing machine

a woman wearing glasses

one or more people hiking

a dog playing outdoors

Fig. 1. Top-5 videos per query sentence retrieved from V3C1 [1], a large collection of one million unlabeled web video clips, by the proposed
SEA model. Queries are from the TRECVID Ad-hoc Video Search benchmarks [2]–[5].

• We propose Sentence Encoder Assembly (SEA), a new
and general method for effectively exploiting varied
sentence encoders. SEA bypasses the issues of vector
concatenation by learning common spaces per encoder.

• To derive a cross-modal similarity from multiple common
spaces, we propose multi-space multi-loss learning, an
effective mechanism to explore complementarities among
the individual common spaces.

• Our solution surpasses the state-of-the-art on four bench-
marks, i.e., MSR-VTT, TRECVID AVS 2016–2019,
TGIF and MSVD. Moreover, our solution is easy to
implement. With its generality, effectiveness and simplic-
ity, SEA has opened up a promising avenue for harness-
ing novel sentence encoders for continuous performance
improvement of AVS. Code and data are available at
https://github.com/li-xirong/sea.

II. RELATED WORK

Earlier methods for AVS follow a concept-based ap-
proach [8], [9], [25]–[29], with both queries and videos repre-
sented in a pre-defined concept space. An intrinsic drawback of
the concept-based approach is that concepts in use have to be
specified in advance, typically according to their occurrence in
training data. Such a hand-crafted common space is suboptimal
for cross-modal similarity computation [12]. In order to over-
come the drawback, end-to-end learning of concept-free and
cross-modal representations has been the mainstream [14]–
[16], [30], [31]. As we target at query representation learning,
in what follows we discuss recent progress in this direction.

The classical Bag-of-Words (BoW) representation is com-
monly used for its simplicity. In [20], for instance, a query
is first encoded as a BoW vector, and then projected into
a latent space through a fully connected layer. However, the
BoW encoder has two intrinsic issues. First, it cannot handle
semantic relatedness between words. In a BoW feature space,
the distance of “a beagle is running” to “a dog is running” is
the same as to “a person is running”, even though the former
pair is visually and semantically more close. Second, it fully
ignores word order. To resolve the first issue, Dong et al. [32]
employ a pre-trained word2vec model to encode each word
in a given query into a dense vector and consequently obtain
the query vector by mean pooling over the word-level vectors.

Later in Liu et al. [16], NetVLAD [33] is adopted to exploit
second-order statistics of the word-level vectors. To overcome
the limit of BoW in sequential modeling, varied forms of
sequence-aware deep neural networks are investigated. For
instance, GRU is used in [15], bi-LSTM in [34], relational
GCN in [30], and more recently BERT in [17], [23].

While more advanced sentence encoders are being actively
exploited for AVS, it appears to us that no specific encoder
is ready to rule them all. We attribute this to the variety
and complexity of AVS queries, which can be short phrases
or detailed descriptions of multiple-object actions in specific
scenes. For the former case, a BoW encoder will suffice, while
the latter case requires a complicated encoder to effectively
capture fine-grained information. In the context of image/video
caption retrieval, Dong et al. [32] make an initial endeavor
to combine multiple encoders including BoW, w2v and GRU
for query representation. In particular, they concatenate the
output of the individual encoders into a lengthy vector. Based
on [32], Li et al. [12] develop W2VV++, the winning entry
for the TRECVID AVS 2018 evaluation [35]. Contemporarily,
Dong et al. [14] propose the Dual Encoding network, wherein
three encoders, i.e., BoW, bi-GRU and 1-d CNN, are employed
to build a multi-level query representation. Follow-ups of
[14], e.g., [13], [24], [31] also leverage multiple encoders,
and again merge the output of the encoders in advance to
cross-modal representation learning. By contrast, our multi-
space learning mechanism makes our model more flexible to
harness the complementarities between distinct sentence en-
coders. Consequently, even with common 2D-CNN features as
video representation, our proposed model compares favorably
against the state-of-the-art.

Note that at a high level, the idea of sentence encoder
assembly is similar to the conventional ensemble methods [36].
However, ensemble learning is a very general idea, typically
studied in the context of a classification task. Therefore, a gap
naturally exists between the idea itself and putting it to work
on AVS. This paper is an initial attempt to bridge the gap.

III. PROPOSED METHOD

A. Problem Formalization
We formalize an ad-hoc video search process as follows.

We denote a specific video clip as v and a large collection

https://github.com/li-xirong/sea
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Fig. 2. Proposed Sentence Encoder Assembly (SEA) method for exploiting multiple sentence encoders {et,1, . . . , et,k} for computing cross-modal
similarities between a given query sentence s and a specific unlabeled video v. Instead of concatenating the output of the individual sentence encoders as
in previous works [12]–[14], our SEA model simultaneously learns k common spaces for the k encoders. Rather than minimizing a single loss computed based
on the combined similarity

∑k
i=1 cmsi(s, v), SEA is trained to minimize a combine loss

∑k
i=1 lossi(s). Such a multi-space multi-loss learning mechanism

is novel and crucial for AVS, meanwhile easy to implement.

of n unlabeled video clips as V = {v1, . . . , vn}. For an ad-
hoc query in the form of a sentence s, let cms(s, v) be a
cross-modal similarity function that measures the semantic
relevance between the query and a specific video. Accordingly,
the search process boils down to sorting V in descending order
in terms of cms(s, v) and returning the top ranked items for
the given query. The computation of cms(s, v) requires proper
embeddings of both s and v into a common cross-modal space.
While visual CNNs are prerequisites for video embedding,
sentence encoders are required for query embedding. Let et
be a specific sentence encoder, which encodes the given query
into a dt-dimensional real-valued vector, i.e., et(s) ∈ Rdt .
Having k distinct sentence encoders {et,1, . . . , etk} shall give
us k vectors of varied dimensions {dt,1, . . . , dt,k}. We aim for
a model that effectively exploit the multiple sentence encoders
for computing cms(s, v).

Next, we describe in brief sentence encoders investigated in
this work in Section III-B, followed by the proposed sentence
encoder assembly (SEA) model in Section III-C.

B. Sentence Encoders in Use
We consider five present-day sentence encoders, i.e., Bag-

of-Words (BoW), word2vec (w2v), GRU, bi-GRU and BERT.
Among them, the first two are unigram, while the others are
sequential models. Their main properties are summarized in
Table I.

1) BoW. As a classical text encoder, BoW simply quantizes
a given sentence s of l words with respect to a pre-specified

TABLE I
FIVE SENTENCE ENCODERS USED IN THIS PAPER. THE SPECIFIC VALUE
OF THE VOCABULARY SIZE m IS DATASET-DEPENDENT, WHICH IS 7,676

FOR MSR-VTT, 3,981 FOR TGIF AND 2,917 FOR MSVD. THE NOTATION
m+ MEANS THE VOCABULARY OF GRU AND BI-GRU IS SLIGHTLY

BIGGER THAN m DUE TO THE INCLUSION OF STOPWORDS AND SPECIAL
TOKENS FOR SEQUENTIAL MODELING.

Encoder Vocabulary Dim. dt Training Prior work
BoW m m Not trainable [12], [14], [20], [32]

w2v 1.7 millions 500
pre-trained1

and fixed [12], [13], [21], [32]

GRU m+ 1,024
trained from
scratch [12], [15], [32]

bi-GRU m+ 2,048
trained from
scratch [13], [14]

BERT 30,000 768
pre-trained2

and fixed [17], [23]

vocabulary of m words. Let c(s, j) be a function that counts
the occurrence of the j-th word in the sentence. Accordingly,
we have the BoW encoding eBoW (s) as

eBoW (s) := (c(s, 1), . . . , c(s,m)). (1)

Note that an AVS query is relatively short, often containing
less than 10 words. Meanwhile, the vocabulary size is much
larger, with a typical order of 104. As a consequence, eBoW (s)
is a long and sparse vector.

2) w2v. The w2v model [37] learns to produce word-level
dense and semantic vectors by training a two-layer neural
network on a large text corpus, with the goal to reconstruct
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linguistic contexts of words in the training text. As computing
the reconstruction loss requires no extra manual annotation,
w2v encodes millions of words with ease. We adopt a 500-
dimensional w2v model1 from [32]. We also tried alternatives
such as GloVe [38], and found it less effective in our pre-
liminary experiments. Let w2v(s[i]) be a lookup function that
returns the embedding vector for the i-th word of s, we obtain
w2v based sentence encoding by mean pooling, i.e.,

ew2v(s) :=
1

l

l∑
i=1

w2v(s[i]). (2)

3) GRU. The Gated Recurrent Unit (GRU) network [39]
models the sequential information within a sentence by itera-
tively generating a sequence of recurrent hidden state vectors
{~h1, . . . ,~hl}. In particular, the hidden state vector at time-
step i, ~hi, is jointly determined by the word embedding
of the current word s[i] and ~hi−1, the hidden state vector
at the previous time-step. Similar to LSTM [40], the GRU
network effectively prevents the vanishing gradient problem
by introducing a gating mechanism to modulate the flow
of information inside the unit. Meanwhile, as GRU has no
separate memory cell, it has a simplified architecture and thus
with less parameters to be trained. Following [12], we obtain
the GRU-based sentence encoding by mean pooling over the
hidden vector sequence, i.e.,

egru(s) :=
1

l

l∑
i=1

~hi. (3)

4) bi-GRU. The bi-directional GRU (bi-GRU) network
extends the forward GRU by including a backward GRU that
encodes the sequence in a reverse order. Given { ~h1, . . . , ~hl} as
hidden state vectors of the backward GRU, our bi-GRU based
sentence encoding is obtained by

ebigru(s) :=
1

l

l∑
i=1

~hi ⊕ ~hi, (4)

where⊕ denotes vector concatenation. Note that given forward
and backward hidden vectors of the same size, ebigru provides
a richer representation than egru at the cost of doubled
parameters. Hence, we shall use either egru or ebigru, but not
both.

5) BERT. The BERT model, built by stacking a number
of L bi-directional Transformer blocks [41], generates word
embeddings for a given sentence by progressively passing
encodings through the multiple blocks. A Transformer block
consists of a self-attention network and a feed-forward net-
work [42]. The self-attention network accepts encodings of
individual tokens from the previous Transformer block, weighs
their importance to each other by a self-attention mechanism,
and accordingly generates new encodings. These encodings are
then fed in parallel into the feed-forward network to produce
the output encodings of this block. In this work, we adopt the
base version of BERT containing L = 12 blocks, which has

1https://github.com/danieljf24/w2vv Note that while [32] performs image-
to-text matching experiments on Flickr30k, its w2v model was trained on
English tags of 30 million Flickr images, using the skip-gram algorithm.

been pre-trained on English Wikipedia and book corpora for
masked language modeling and next sentence prediction2. We
obtain the BERT-based sentence encoding by mean pooling as

ebert(s) =
1

l

l∑
i=1

token-emb(s[i], L− 1), (5)

where token-emb(s[i], L− 1) denotes the embedding of the i-
th word produced by the second-last block. Note that we tried
max pooling or using the embedding of the first / last token,
and found these alternatives less effective than mean pooling.

With the sentence encoders introduced, we proceed to
describe how to effectively combine them in an end-to-end
framework.

C. Sentence Encoder Assembly

We propose to combine k distinct sentence encoders
{et,i|i = 1, . . . , k} in a generic multi-space multi-loss learning
framework.

Multiple common spaces. Our framework consists of k
cross-modal matching subnetworks, each corresponding to a
specific sentence encoder and learning its own common space.
Each subnetwork, indexed by i, consists of two fully connected
(FC) layers, one on the text side to transform et,i(s) into a
dc,i-dimensional vector, and the other on the video side that
transforms the video feature vector f(v) into another dc,i-
dimensional vector. Consequently, the sentence-video semantic
relevance, denoted as cmsi(s, v), is computed as the cosine
similarity between the two embedding:

cmsi(s, v) := cosine-sim( FCt,i(et,i(s))︸ ︷︷ ︸
text embedding

, FCv,i(f(v))︸ ︷︷ ︸
video embedding

),

(6)
where FCt,i and FCv,i indicate the two FC layers, each
followed by a tanh function to increase their learning capacity.
We choose the cosine similarity as it is a widely used similarity
metric for cross-modal matching [14], [16], [18], [43], [44].
We also tried a Euclidean distance based similarity, which is
however less effective3.

By simply averaging the similarities computed in the in-
dividual common spaces, we have the overall cross-modal
similarity as

cms(s, q) :=
1

k

k∑
i=1

cmsi(s, v). (7)

Note that we do not go for more complicated alternatives,
e.g., weighing the individual similarities by self-attention
mechanisms. Rather, we opt for this simple combination
strategy, not only for preventing the risk of over-fitting. Such
a strategy also encourages the individual common spaces to
be good enough to be combined, as they are set to be equally
important.

Multi-loss learning. We develop our loss function based on
the improved triplet ranking loss (ITRL) by Faghri et al. [43].

2https://github.com/google-research/bert
3For SEA ({BoW,w2v}) trained with the Euclidean distance based

similarity, its infAP scores on TV16/17/18/19 are 12.8/18.9/11.8/10.4, clearly
lower than the cosine similarity counterpart (15.7/23.4/12.8/16.6).

https://github.com/danieljf24/w2vv
https://github.com/google-research/bert
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While originally proposed for image-text matching, ITRL is
now found to be effective for text-video matching [12]–[16].
Unlike the classical triplet ranking loss that selects negative
training examples by random, ITRL considers the negative that
violates the ranking constraint the most (within a mini-batch)
and thus deemed to be the most informative for improving the
model being trained. Given a training sentence s with v+ as a
video relevant w.r.t s and v− as irrelevant, we express ITRL
as{

v−∗ = argmaxv−∈batch(cms(s, v
−)− cms(s, v+))

ITRL(s) = max(0, α+ cms(s, v−∗)− cms(s, v+)),
(8)

where α is a positive hyper-parameter concerning the margin.
We argue that such a single loss is suboptimal for multi-

space learning. Given a specific mini-batch, hard negative
examples selected in terms of the combined similarity are
not necessarily the most effective for learning the individual
common spaces. Therefore, we choose to compute ITRLi(s)
per space, and accordingly learn to minimize their combined
loss, i.e.,

k∑
i=1

ITRLi(s). (9)

In a similar spirit to similarity combination, we again treat all
the sub losses equally. As exemplified in Fig. 3, the combined
loss lets the model be exposed to more diverse hard negatives.
We empirically find that compared to the single loss, the
combined loss provides around 30% extra hard negatives per
training epoch.

commentary on a horse race on a grass track the guy in red leads the race

an asian man in black and white is smiling and waving

a female giving a nail art tutorial 

a man is touching a woman's neck

(b)(a) (c) (d)

Fig. 3. Examples of hard negative videos automatically selected for
specific sentences during training. The first column (a) is selection based on
the combined similarity in a single common space. The other columns indicate
selections made based on individual similarities w.r.t (b) eBoW , (c) ew2v , and
(d) egru within the proposed multi-space and multi-loss framework. Using the
combined loss allows the model to be exposed to more diverse hard negatives
in a given batch.

TABLE II
DATASETS USED IN OUR EVALUATION. FOR ALL EXPERIMENTS WE

TRAIN MODELS ON THE SPECIFIED TRAINING SET AND USE THE
CORRESPONDING VALIDATION SET FOR MODEL SELECTION.

Data split Data sources Video clips Frames Queries
MSR-VTT experiments:
train set

MSR-VTT [45]

6,513 197,648 –
val. set 497 15,347 9,940
test-full 2,990 92,467 59,800
test-1k [34] 1,000 30,932 1,000
TRECVID experiments:

train set MSR-VTT [45] 10,000 305,462 –
TGIF [46] 100,855 1,045,268 –

val. set TV16-VTT-dev [2] 200 5,941 200
test set for
TV16/17/18 IACC.3 [2] 335,944 3,845,221 90

test set for
TV19 V3C1 [1] 1,082,649 7,839,450 30

TGIF experiments:
train set

TGIF [46]
78,799 818,140 –

val. set 10,705 110,252 10,828
test set 11,351 116,876 34,074
MSVD experiments:
train set

MSVD [47]
1,200 23,313 –

val. set 100 2,415 4,291
test set 670 15,429 27,767

To sum up, the multi-space strategy provides a more flexible
mechanism to exploit complementarities among the distinct
sentence encoders. Meanwhile, given a specific mini-batch
during training, the multi-loss strategy allows each common
space to select its own hard negative example. More flexibility
in encoder ensemble and more effectiveness for training to-
gether contributes to the superior performance of the proposed
SEA method against the state-of-the-art.

IV. EVALUATION

We first conduct experiments on two major benchmarks,
MSR-VTT [45] and TRECVID AVS [2]. While originally
developed for video captioning, MSR-VTT has been adopted
by recent works for text-based video retrieval [14]–[18], [30],
[34]. TRECVID AVS is a leading benchmark for ad-hoc video
search at large-scale since 2016 [2]–[5]. The two benchmarks
have their own characteristics. As shown in Table II, while
MSR-VTT has a relatively small amount of 2,990 test videos,
it has over 59k query sentences. As for TRECVID, it has a
much larger number of test videos, over 335k in the 2016 /
2017 / 2018 editions and over one million in the 2019 edition.
Hence, a joint evaluation on the two benchmarks provides a
comprehensive assessment of the state-of-the-art. In addition,
we report performance on TGIF [46] and MSVD [47].

A. Experimental Setup

We first describe experimental setups unique to MSR-VTT
and TRECVID, and then introduce common implementations.

1) Setup for MSR-VTT: We follow the official data split,
which divides MSR-VTT into three disjoint subsets used for
training, validation and test, respectively. Note that in [34] and
its follow-ups [16]–[18], a smaller test set of 1,000 videos
randomly sampled from the full test set is used, which we
refer to as test-1k.

Performance metrics. Following the previous works, we
report R@k, k = 1, 5, 10, the percentage of test queries that
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have at least one relevant video covered in the top k returned
items, and Median rank (Med r), the median rank of the first
relevant video in the search results. Mean Average Precision
(mAP) is also reported to assess the overall ranking quality.

2) Setup for TRECVID: We evaluate on the TRECVID
AVS testbed from the last four years. The test video col-
lection for TV16 / TV17 / TV18 is IACC.3 [2], containing
335,944 web video clips. The test collection for TV19 is
V3C1 [48], which contains 1,082,649 web video clips, with
even more diverse content, no predominant characteristics
and low self-similarity [1]. As no training data is provided
by the organizers, we adopt the setup of the winning entry
of TV18 [35], using MSR-VTT and TGIF [46] for training
and the development set of the TV16 video-to-text matching
task [2] for validation.

Performance metric. The official metric, i.e., inferred
average precision (infAP) [49], is used.

3) Common Implementations: We use public feature data4,
where each video is represented by a 4,096-d feature vector,
obtained by using two pre-trained CNNs, i.e., ResNet-152 and
ResNeXt-101, to extract 2,048-d features from video frames.
Frame-level features are concatenated and aggregated to video-
level features by mean pooling. We refer to [12] for details.

Training. The margin parameter α in the loss is set to
0.2 according to [43]. The dimensionality of all the common
spaces dc,i is set to 2,048, which achieves a good balance
between model performance and model complexity. In fact,
our model is highly robust to the choice of the common space
dimensionality, see the Appendix. We perform SGD based
training, with a mini-batch size of 128 and RMSProp as the
optimizer. The learning rate is initially set to 10−4, decayed
by a factor of 0.99 per epoch. Following [50], we half the
learning rate if the validation performance does not increase in
three consecutive epochs. Early stop occurs when no validation
performance increase is achieved in ten consecutive epochs.
For each model with specific configurations of sentence en-
coders, we repeat training three times and pick the version that
maximizes the validation performance. All experiments were
done with PyTorch (1.2.0) [51] on an Nvidia GEFORCE GTX
1080Ti GPU.

B. Experiment 1. Which Sentence Encoders to Use?

We compare with the state-of-the-art W2VV++ [12], which
combines multiple sentence encoders by concatenating their
output into a long feature vector and then embeds the con-
catenated vector into a common space by an FC layer. While
originally developed for automated search, W2VV++ has been
used with success by Kratochvı́l et al. [52] and Lokoć
et al. [23] in the Video Browser Showdown, a leading
benchmark for interactive video retrieval [53], [54]. For a fair
comparison, we use author-provided source code5 with the
same setup as described in Section IV-A3.

The performance of W2VV++ and the proposed SEA model
is presented in Table III. For all configurations of sentence

4https://github.com/li-xirong/avs
5https://github.com/li-xirong/w2vvpp

encoders, SEA consistently outperforms its W2VV++ counter-
part. Specifically, on MSR-VTT our model obtains a relative
improvement ranging from 3.6% to 7.3% in terms of mAP.
While on TRECVID, the relative improvement w.r.t the overall
performance ranges from 7.3% to 25.7%. The advantage
becomes even more clear when four sentence encoders are
combined, see the last two rows in Table III. These results
justify the effectiveness of the multi-space mechanism.

As more sentence encoders are included, we observe
different phenomenons on the two benchmarks. For MSR-
VTT, adding sequential encoders is helpful. Compared to
SEA ({BoW, w2v}), SEA ({BoW, w2v, GRU}) improves mAP
from 21.3 to 22.1, while substituting BERT for GRU obtains
higher mAP of 23.0. The peak performance, mAP of 23.3, is
reached by SEA ({BoW, w2v, GRU, BERT}) and SEA ({BoW,
w2v, bi-GRU, BERT}). By contrast, the inclusion of GRU
and BERT has a negative impact on TRECVID. Compared to
SEA ({BoW, w2v}) which has the best overall infAP of 17.1,
adding GRU results in an overall infAP of 16.8, while adding
BERT results in a lower value of 16.3. By analyzing the query
sentences of the two benchmarks, we find that an MSR-VTT
sentence tend to be longer, containing 9.3 words on average,
while the corresponding number of TRECVID is 7.1. We at-
tribute this difference to the fact that MSR-VTT was originally
meant for video captioning, so its sentences are more detailed.
This is furthered confirmed by part-of-speech statistics, where
we find that an MSR-VTT query has 3.3 nouns, 1.8 verbs and
0.6 adjective on average, while a TRECVID query has 2.7
nouns, 1.0 verb and 0.4 adjective. TRECVID queries are more
keyword-oriented, e.g., “a newspaper”, “people shopping”, and
“a blond female indoors”. Hence, for answering keyword-
oriented queries, SEA ({BoW, w2v}) is most suited, while
a full setup, e.g., SEA ({BoW, w2v, bi-GRU, BERT}), is
preferred for addressing description-oriented queries.

We further analyze the complementarity between the distinct
sentence encoders by inspecting how they behave when used
individually. To that end, we train a cross-modal matching
network per encoder on MSR-VTT. To obtain an intuitive
understanding of what each network has learned as its common
space, we perform sentence-to-sentence retrieval, using all
the 200k captions in MSR-VTT as a sentence pool. As w2v
and BERT are pre-trained on large-scale corpora with a large
vocabulary, they better handle subjects of low occurrence
(‘beagle’) or zero occurrence (‘rottweiler’) in the training
data, see Fig. 4. Interestingly, for the query ‘a is running
on lawn’ where we have intentionally remove the subject,
BoW returns sentences describing person running, while some
of the top-ranked sentences by BERT are still related to
dogs. Moreover, we perform a per-query comparison between
the matching networks for video retrieval. Among all the
59,800 test queries, the network with BoW is better than
the others for 15.2% of the test queries, while the numbers
corresponding to w2v, GRU, bi-GRU and BERT are 14.5%,
12.9%, 14.0% and 19.6%, respectively. The results clearly
show the complementarity between the encoders.

https://github.com/li-xirong/avs
https://github.com/li-xirong/w2vvpp
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TABLE III
JOINT EVALUATION OF SENTENCE ENCODERS AND THEIR ASSEMBLY MODELS, i.e., W2VV++ [12] AND THE PROPOSED SEA, ON MSR-VTT AND

TRECVID. NUMBERS ARE SHOWN IN PERCENTAGES, WITH BEST SCORES SHOWN IN BOLD FONT. FOR A GIVEN SETUP OF SENTENCE ENCODERS,
RELATIVE IMPROVEMENT OF SEA OVER ITS W2VV++ COUNTERPART IS GIVEN IN PARENTHESES. SEA IS CONSISTENTLY BETTER.

Sentence encoders Model MSR-VTT (the full test set) TRECVID (metric: infAP)
R@1 R@5 R@10 Med r mAP TV16 TV17 TV18 TV19 MEAN

{BoW, w2v} W2VV++ 10.9 29.1 39.9 19 20.2 14.4 21.8 11.1 14.3 15.4
SEA 11.6 30.6 41.6 17 21.3 (↑5.4%) 15.7 23.4 12.8 16.6 17.1 (↑11.2%)

{BoW, w2v, GRU} W2VV++ 11.1 29.6 40.5 18 20.6 16.2 22.3 10.1 13.9 15.6
SEA 12.2 31.9 43.1 15 22.1 (↑7.3%) 15.0 23.4 12.2 16.6 16.8 (↑7.5%)

{BoW, w2v, bi-GRU} W2VV++ 11.3 29.9 40.6 18 20.8 16.1 21.7 10.4 13.5 15.4
SEA 12.4 32.1 43.3 15 22.3 (↑7.2%) 16.4 22.8 12.5 16.7 17.1 (↑10.9%)

{BoW, w2v, BERT} W2VV++ 12.3 31.8 43.0 15 22.2 15.1 22.5 10.2 12.8 15.2
SEA 12.8 33.1 44.6 14 23.0 (↑3.6%) 15.3 22.8 12.1 14.8 16.3 (↑7.3%)

{BoW, w2v, GRU, BERT} W2VV++ 12.1 31.7 42.7 16 22.0 14.3 19.3 9.3 10.1 13.3
SEA 13.0 33.6 44.9 14 23.3 (↑5.9%) 16.0 23.1 12.1 15.4 16.7 (↑25.7%)

{BoW, w2v, bi-GRU, BERT} W2VV++ 12.0 31.3 42.3 16 21.8 15.8 20.6 9.0 10.5 14.0
SEA 13.1 33.4 45.0 14 23.3 (↑6.9%) 15.9 22.9 11.7 15.5 16.5 (↑18.1%)

Word frequency in the top-20 ranked sentences

BoW dog:20 running:19 forest:4 field:4 around:3

w2v running:19 dog:18 field:5 forest:4 around:3 

GRU dog:20 running:14 field:11 runs:6 around:4 

biGRU dog:19 running:12 field:11 around:5 runs:4 

BERT dog:20 running:7 runs:6 field:5 street:5 

BoW running:10 lawn:10 woman:6 girl:3 grass:3 

w2v running:17 dog:14 field:7 around:4 dogs:3 

GRU dog:20 field:11 runs:10 running:9 around:4 

biGRU dog:20 running:9 field:8 runs:4 playing:3 

BERT dog:11 running:9 runs:8 around:6 street:6

BoW                     running:17 person:8 lawn:5 grass:4 girl:3 

w2v running:18 dog:16 field:8 around:4 dogs:3 

GRU running:16 man:7 field:5 back:3 ground:3 

biGRU running:12 field:9 man:6 grass:6 runs:5 

BERT dog:11 grass:9 around:6 kitten:4 playing:4 

BoW running:17 person:8 lawn:5 grass:4 girl:3

w2v running:20 man:7 grass:7 field:4 kid:2

GRU running:16 field:8 man:8 back:3 people:2

biGRU running:15 field:12 man:10 ball:4 grass:4 

BERT running:15 field:12 dog:8 man:3 yard:3 

a beagle is running on lawn

a rottweiler is running on lawn

a dog is running on lawn

a is running on lawn

Fig. 4. Visualization of sentence-to-sentence retrieval results. Given a query sentence, e.g., “a dog is running on lawn”, we retrieve top-20 sentences from
MSR-VTT (which has 200k sentences in total), using common spaces learned by cross-modal matching networks with respect to specific sentence encoders. A
yellow grid indicates sentences related to dogs. For the last query, we intentionally remove the subject. Encoders pre-trained on large-scale corpora, i.e., w2v
and BERT, better handle subjects of low occurrence (‘beagle’) or zero occurrence (‘rottweiler’) in the training data.

TABLE IV
EVALUATING DIFFERENT METHODS FOR FUSING MULTIPLE SENTENCE
ENCODERS, i.e., {BOW, W2V, GRU}. THE MOST EFFECTIVE METHOD IS

TO TRAIN THE SEA MODEL WITH THE COMBINED LOSS.

Fusion method TV16 TV17 TV18 TV19 MEAN
W2VV++ 16.2 22.3 10.1 13.9 15.6
Transformed W2VV++ 13.9 20.2 10.2 13.5 14.5
Model averaging 14.9 21.9 11.6 15.4 16.0
SEA single loss 14.7 21.8 11.2 14.7 15.6
SEA combined loss 15.0 23.4 12.2 16.6 16.8

C. Experiment 2. Other Alternatives for Encoder Assembly?

As the output size of the individual sentence encoders
ranges from 500 (ew2v) up to over 10k (eBoW ), one might nat-
urally challenge the deficiency of the concatenation operation
used by W2VV++. For a more comprehensive comparison, we
further implement two more alternatives:
• Transformed W2VV++. We modify W2VV++ by adding an
FC layer after each encoder to transform all encodings into
2,048-d vectors in advance to concatenation. This allows the
size of the concatenated vector to be invariant with respect to
the encodings. The new variant is also end-to-end trained.
• Model averaging. The cross-modal subnetworks w.r.t the
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individual encoders are trained separately. Cross-modal simi-
larities computed by the subnetworks are equally combined.

Table IV shows the results of these alternatives on
TRECVID. The lower performance of Transformed W2VV++
suggests that adjusting the encodings causes loss in the orig-
inal information produced by the individual encoders. Model
averaging outperforms W2VV++, again suggesting the benefit
of using multiple common spaces against a single common
space. The result that model averaging is less effective than
SEA verifies the necessity of learning multiple common spaces
in a unified framework.

D. Experiment 3. Combined loss versus Single loss

We have qualitatively illustrate the benefit of the combined
loss against the single loss in Fig. 3. Now we provide more
quantitative evidence. As Table IV shows, SEA trained with
the single loss does not outperform W2VV++. We can also
observe similar results from the learning curves in Fig. 5.
For both W2VV++ and SEA, we use {BoW, w2v, GRU} as
their sentence encoders. Note that the number of epochs each
model takes is not pre-specified. Due to the early stop strategy,
the number of training epochs actually took varies among the
models. As shown in Fig. 5, SEA with the single loss (the
blue curve) quickly converged to a suboptimal state. These
results proof the importance of the combined loss for training
the multi-space network.

0 5 10 15 20 25 30 35 40
Training epochs

0.425

0.450

0.475

0.500

0.525

0.550

0.575

Va
lid

at
io

n 
pe

rfo
rm

an
ce

 (m
et

ric
: M

IR
)

W2VV++
Dual Encoding
SEA, single loss
SEA, combined loss

Fig. 5. Learning curves of distinct models in the TRECVID experiments.
Validation is performed after each epoch. The number of epochs a model takes
is not pre-specified. After a model reaches its peak performance, as indicated
by yellow markers, early stopping occurs in ten epochs. So the number of
training epochs actually took varies among the models. Both W2VV++ and
SEA use {BoW, w2v, GRU} as their sentence encoders. For training the multi-
space network, the combined loss is preferred over the single loss.

E. Comparison to the State-of-the-Art

1) On MSR-VTT: We compare with 11 recent models as
follows, which have been evaluated on the test-1k set [17],
[18], [34], the full set [30], [31], [55] or both [12], [14], [16],
[43], [44]. We highlight their choices of sentence encoders:
• JSFusion [34]: Use bi-LSTM as its sentence encoder.
• VSE++ [43]: Use GRU as its sentence encoder.
• Mithun et al. [55]: Use GRU as its sentence encoder.
• Miech et al. [18]: Use a 1D-CNN as its sentence encoder.

TABLE V
STATE-OF-THE-ART ON MSR-VTT FOR TEXT-BASED VIDEO

RETRIEVAL. BEST SCORES FROM THE CITED PAPERS ARE USED, WHERE
APPLICABLE. ON BOTH THE test-1k SET AND THE full TEST SET, OUR

PROPOSED SEA({BOW, W2V,BI-GRU, BERT}) IS THE BEST.

Test
set Model R@1 R@5 R@10 Med

r mAP

1k
[34]

JSFusion [34] 10.2 31.2 43.2 13 n.a.
VSE++ [43] 15.2 37.7 50.1 10 26.0
TCE [44] 16.1 38.0 51.5 10 n.a.
Miech et al. [18] 14.9 40.2 52.8 9 n.a.
UniViLM [17] 15.4 39.5 52.3 9 n.a.
Dual Encoding [14] 18.8 44.4 57.2 7 31.6
W2VV++ [12] 18.9 45.3 57.5 8 31.6
CE [16] 20.9 48.8 62.4 6 n.a.
SEA 23.8 50.3 63.8 5 36.6

Full

Mithun et al. [55] 7.3 21.7 30.9 34 n.a.
TCE 7.7 22.5 32.1 30 n.a.
CF-GNN [31] 8.0 23.2 32.6 31 16.0
VSE++ 8.7 24.3 34.1 28 16.9
HGR [30] 9.2 26.2 36.5 24 n.a
CE 10.0 29.0 41.2 16 n.a.
Dual Encoding 11.1 29.4 40.3 19 20.5
W2VV++ 11.1 29.6 40.5 18 20.6
SEA 13.1 33.4 45.0 14 23.3

• Dual Encoding [14]: Hierarchical encoding that combines
BoW, bi-GRU and 1D-CNN.
• W2VV++ [12]: Concatenate encodings of BoW, w2v and
GRU
• CE [16]: Use NetVLAD as its sentence encoder.
• TCE [44]: Use a latent semantic tree for query representation
learning.
• HGR [30]: Encode by hierarchical semantic graph including
three levels of events, actions, entities and relationships across
levels.
• CF-GNN [31]: Graph neural network based search result
reranking, with Dual Encoding as its sentence encoder.
• UniViLM [17]: BERT as its sentence encoder.

Note that all the models were trained on the official training
set of MSR-VTT except for [17], [18], where the authors pre-
trained their model on 100 million narrated video clips and
then fine-tuned on MSR-VTT.

Results. Table V shows the performance of the distinct
models on the MSR-VTT full test set and test-1k. For the ease
of comparison, the performance of the baselines is directly
cited from the original papers except for W2VV++5, VSE++6

and Dual Encoding7, which we have re-trained using their
public code with the same video feature as used in this
work. Among the baselines, CE is the best on test-1k, while
W2VV++ is the best on the full test set. On both sets, the
proposed SEA model is the top performer. Notice that the
good performance of CE is obtained by representing videos
with many features including appearance, scene, motion, face,
OCR, speech and audio. Given the simplicity of our video
feature, the advantage of the new model is clearly justified.

2) On TRECVID AVS 2016–2019: We compare with the
top-3 finalist of the TRECVID AVS evaluation each year,

6https://github.com/fartashf/vsepp
7https://github.com/danieljf24/dual encoding

https://github.com/fartashf/vsepp
https://github.com/danieljf24/dual_encoding
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0.0 0.1 0.2 0.3 0.4 0.5
infAP

[object + action] #639 inside views of a small airplane flying
[object + location] #617 one or more picnic tables outdoors

[object + action] #613 a door being opened by someone
[person + action + object + location] #614 a woman riding or holding a bike outdoors

[person + action + location] #632 a person running in the woods
[person + object + location] #624 a person in front of a curtain indoors

[person + action + object + location] #616 a woman wearing a red dress outside in the daytime
[person + action/state + object] #627 a person holding a tool and cutting something

[person + action] #629 a black man singing
[person] #634 a woman and a little boy both visible during daytime

[object + location] #619 one or more art pieces on a wall
[person/being + location] #638 one or more birds in a tree
[object + action] #612 a truck being driven in the daytime

[person + object] #622 a person in a tent
[person + action] #628 a man and a woman holding hands

[person + action] #630 a man and a woman hugging each other
[object] #640 a red hat or cap

[person + action + object + location] #615 a person smoking a cigarette outdoors
[person + action + location] #631 a man and a woman dancing together indoors

[person #636 a man and a baby both visible
[object + location] #618 coral reef underwater

[person + action/state + object] #625 a person wearing a backpack
[person + object + location] #623 a person wearing shorts outdoors

[person/being + location] #637 a shirtless man standing up or walking outdoors
[person + action + location] #633 a group of people walking on the beach

[person + action/state + object] #626 a race car driver racing a car
[object + action] #611 a drone flying

[person + object] #620 a person with a painted face or mask
[person] #635 a bald man

[person + object] #621 person in front of a graffiti painted on a wall

VSE++
W2VV++
Dual Encoding
SEA({BoW,w2v})
SEA({BoW,w2v,bi-GRU})

Fig. 6. Performance of varied models in the TRECVID 2019 (TV19) AVS task, which is to find amidst a set of one million unlabeled videos those
relevant with respect to 30 test queries. For result analysis, each query is preceded by the TRECVID-specified query type, e.g., [person + object] or [person
+ action + location], and ID. The queries are sorted in descending order in terms of their infAP scores by SEA ({BoW,w2v,bi-GRU}). As the key difference
of the varied models is whether multiple sentence encoders are used and how they are combined, the leading performance of the SEA series verifies the
effectiveness of the proposed method, namely multi-space network plus multi-loss training.

TABLE VI
STATE-OF-THE-ART ON TRECVID AVS. SEA SURPASSES THE PRIOR

ART. LATE AVERAGE FUSION OF TWO SEA MODELS OR
SEA ({BOW,W2V}) AND DUAL ENCODING BOOSTS THE PERFORMANCE.

Model TV16 TV17 TV18 TV19 MEAN
Top-3 TRECVID finalists
Rank 1 05.4 [25] 20.6 [26] 12.1 [35] 16.3 [13] n.a.
Rank 2 05.1 [27] 15.9 [28] 08.7 [56] 16.0 [57] n.a.
Rank 3 04.0 [58] 12.0 [29] 08.2 [59] 12.3 [60] n.a.
VideoStory [20], [61] 08.7 15.0 n.a. n.a. n.a.
VSE++ [43] 13.5 16.3 10.6 09.8 12.6
W2VV++ [12] 16.2 22.3 10.1 13.9 15.6
Dual Encoding [14] 16.5 22.8 11.7 15.2 16.6
Extended Dual
Encoding [24] 15.9 24.4 12.6 n.a. n.a.

SEA({BoW,w2v}) 15.7 23.4 12.8 16.6 17.1
SEA({BoW,w2v,bi-GRU}) 16.4 22.8 12.5 16.7 17.1
SEA({BoW,w2v}) +
SEA({BoW,w2v,bi-GRU}) 16.6 23.5 12.6 17.2 17.5

SEA({BoW,w2v}) +
Dual Encoding 17.3 25.0 12.8 17.1 18.1

which naturally reflects the state-of-the-art. We again compare
with W2VV++, VSE++ and Dual Encoding, re-training them
using the TRECVID setup as described in Section IV-A2. We
also include VideoStory [20] which uses BoW as its sentence
encoder, and Extended Dual Encoding [24], a very recent work
which makes use of more than one encodings of the visual and
textual content and two distinct attention mechanisms.

Results. The performance on the TRECVID test data is
shown in Table VI. The proposed SEA model surpasses the
prior art. While the Extended Dual Encoding network [24]
appears to be on par with the SEA models, [24] has factually
used the ground truth of the test set, which shall be unavailable

in real applications, to select the best performing models. By
contrast, our model selection is performed exclusively based
on an independent validation set (see Table II), and thus more
practical.

Late average fusion of Dual Encoding and SEA boosts
the performance further, see the last row. Note that previous
top-performing submissions boost their performance by late
(average) fusion of a handful of models [13], [26], [35] or
nearly hundred models [60]. In this context, the capability of
SEA to advance the state-of-the-art with a single model is a
big advantage for AVS at large-scale.

Fig. 6 shows how each model performs on the individual
queries from the TV19 task, by searching over the one-million
V3C1 collection. Each query is preceded by a TRECVID-
specified query type that reflects the query complexity to some
extent [5]. A query comprised of person, action, object and
location tends to be more complex and thus more difficult
to address than a query of person. While such a pattern can
largely be observed from Fig. 6, exceptions are not uncommon.
Consider query #639, for instance. Although the top-ranked
videos show small airplane flying, they are mostly “external
view”, rather than “inside view” as required. Such a geometric
property has not been effectively captured by the current
sentence encoders that are fully data-driven. We consider
the SEA model, with its flexibility to harvest new encoders,
promising to attack the deficiency.

3) On TGIF and MSVD: For both datasets, we follow the
data partition specified by their developers. That is, training /
validation / test is 78,799 / 10,705 / 11,351 for TGIF and 1,200
/ 100 / 670 for MSVD. All captions are used. The state-of-the-
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TABLE VII
STATE-OF-THE-ART ON TGIF FOR TEXT-BASED VIDEO RETRIEVAL.

Model R@1 R@5 R@10 Med
r mAP

HGR [30] 4.5 12.4 17.8 160 n.a.
Dual Encoding [14] 9.1 21.3 28.6 50 15.7
W2VV++ [12] 9.4 22.3 29.8 48 16.2
CF-GNN [31] 10.2 23.0 30.7 44 n.a.
SEA ({BoW,w2v,GRU}) 10.2 23.6 31.3 41 17.2
SEA ({BoW,w2v,BERT}) 10.7 24.4 31.9 37 17.9
SEA ({BoW,w2v,GRU,BERT}) 11.1 25.2 32.7 36 18.4
SEA ({BoW,w2v,bi-GRU,BERT}) 11.1 25.2 32.8 35 18.5

TABLE VIII
STATE-OF-THE-ART ON MSVD FOR TEXT-BASED VIDEO RETRIEVAL.

Model R@1 R@5 R@10 Med
r mAP

Dual Encoding [14] 20.3 46.8 59.7 6 32.9
CF-GNN [31] 22.8 50.9 63.6 6 n.a.
W2VV++ [12] 22.4 51.6 64.8 5 36.1
SEA ({BoW,w2v,GRU}) 23.2 52.9 66.2 5 37.2
SEA ({BoW,w2v,BERT}) 24.6 55.0 67.9 4 38.7
SEA ({BoW,w2v,GRU,BERT}) 24.4 54.1 67.6 5 38.3
SEA ({BoW,w2v,bi-GRU,BERT}) 23.9 53.9 67.3 5 38.0

art following such a setting is HGR [30] and CF-GNN [31]
on TGIF and CF-GNN on MSVD. Therefore, we compare
with these two models. Dual Encoding and W2VV++ are also
included.

Results. As shown in Table VII and Table VIII, our
SEA model is again the best. Given that the amount of the
training data in MSVD is substantially less than that of TGIF,
the peak performance of SEA on MSVD is reached with less
sentence encoders.

F. Efficiency Analysis

We report in Table IX the amount of trainable parameters,
training time and inference time of the SEA models with
varied setups on MSR-VTT, TGIF and MSVD. Two state-of-
the-art methods, i.e., Dual Encoding [14] and W2VV++ [12],
are included as well. For a fair comparison, all models use the
same size of 2,048 for their common spaces. For all models,
the computational cost of video embedding is excluded from
the inference time as this step is done once in an offline mode.
Concerning the training time, Dual Encoding is slower than
W2VV++ and SEA on MSR-VTT and MSVD, while faster on
TGIF. In particular, SEA ({BoW,w2v,biGRU,BERT}) requires
the longest training time of 4.9 hours on TGIF, as we find that
the model needs more training epochs to trigger the early stop
mechanism on this dataset.

For each model, its inference time to answer a given query
consists of two parts: 1) query embedding that projects the
query into a common space (for Dual Encoding and W2VV++)
or multiple common spaces (for the SEA models), and 2) rank-
ing that performs cross-modal matching between the query and
all videos in a test set and sorting the videos accordingly. The
main computational overhead is due to the online inference of
the BERT encoder. Still, query embedding can be done within
19 milliseconds. As the cross-modal matching is executed in
parallel on GPU, the ranking is extremely fast, costing around

one millisecond. The inference time per query is around 20
milliseconds. Hence, our model is sufficiently fast to support
real-time interactive video retrieval.

V. CONCLUSIONS

We have described a method for exploiting diverse sentence
encoders for ad-hoc video search. Our experiments show
the importance of building a query representation learning
network that supports text-video matching in multiple encoder-
specific common spaces. Nonetheless, the multi-space network
architecture alone is inadequate. In order to effectively utilize
complementaries among the individual common spaces, the
network has to be end-to-end trained with a combined loss.
On four benchmark datasets including MSR-VTT, TRECVID
AVS 2016–2019, TGIF and MSVD, our proposed SEA model
with multi-space multi-loss learning surpasses the prior art.

APPENDIX

The impact of the common space dimensionality. As
shown in Table X, except for using a relatively small value of
256, the dimensionality of the common space has a marginal
impact on the performance of the proposed method. We
recommend to use 2,048 to strikes a proper balance between
performance and model complexity.

The role of pretraining corpus. As noted in Section III-B,
we use w2v and BERT which were pre-trained on Flickr
tags [32] and web documents [41], respectively. To investigate
if better performance can be obtained by pre-training the two
encoders on the same corpus, we have re-trained w2v on
Wikipedia dumps and book corpus as used for BERT. We do
not try the opposite direction, i.e., re-training BERT on the
Flickr data, since Flickr tags are not natural-language text and
thus unsuited for training BERT. As shown in Table XI, the
Flickr version of w2v is slightly better.
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