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Abstract Due to the subjective nature of social -tag answering 47], and photo-based advertisementd?]]
ging, measuring the relevance of social tags with respett nhame a few. As users often assign tags when posting
to the visual content is crucial for retrieving the increasingheir images on social media, one might expect tag-based
amounts of social-networked images. Witnessing the limitetrieval to be a natural and good starting point for social
of a single measurement of tag relevance, we introduce image retrieval. Compared to content-based seéicltaf-
this paper tag relevance fusion as an extension to methoolased search potentially bypasses the semantic gap prob
for tag relevance estimation. We present a systematic studgm, and its scalability has been veribed by decades of text
covering tag relevance fusion in early and late stages, aneltrieval researct?]. However, due to varied reasons, such
in supervised and unsupervised settings. Experiments @s diversity in user knowledge, levels of expertise, and tag
a large present-day benchmark set show that tag relevargieg intentions, social tagging is known to be ambiguous,
fusion leads to better image retrieval. Moreover, unsupesubjective, and inaccurat29d). Moreover, since individual
vised tag relevance fusion is found to be practically atags are used only once per image in the social tagging
effective as supervised tag relevance fusion, but withoyaradigm, relevant and irrelevant tags for a specibc image
the need ofany training efforts. This bPnding suggests theare not separable by tag statistics alone. Measuring social
potential of tag relevance fusion for real-world deploymenttag relevance with respect to the visual content they are
describing is essential.
Keywords Social image retrieva Tag relevance For tag relevance estimation, quite a few methods have
estimationa Tag relevance fusion been proposed. For example, Liuakt[24] propose a non
parametric method to rank tags for a given image by kernel
density estimation in a specibc visual feature space. Chen
1 Introduction etal. [4] train a Support Vector Machine classiber per tag.
Given an image and its social tags, Zhale{57] propose
Searching for the ever-growing amounts of varied antb measure the relevance of a specibc tag in terms of its
dynamically changing images on the social web is imporsemantic similarity to the other tags. In our earlier work
tant for a number of applications. The applications includ§l9], a neighbor voting algorithm is introduced which
landmark visualization 14], visual query suggestion exploits tagging redundancies among multiple users. Using
[48], training data acquisition3B], photo-based question learned tag relevance value as a new ranking criterion, bet
ter image search results are obtained, when compared to
image search using original tags.

)éé;IL;bc),ratory oData Engineering anidnowledge Positioned in a deluge of social data, however, tag
Engineering, Renmin University @fhina, Beijingl00872, China relevance estimation is challenging. Visual concepts, for
e-mail: xirong.li@gmail.com example, Oboat or Ogarden®, vary signibPcantly in terms
% Li of their visual appearance and visual context. A single
Shanghai Key Laboratory dfitelligent Information Processing, measurement of tag relevance as proposed in previous
ShanghaR00443, China work is limited to tackle such large variations, resulting
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in suboptimal image search. At the feature level, it is no Related work

evident that no single feature can represent the visual con

tent completely 9, 26, 40, 49, 54]. Global features are 2.1 Social tag relevance estimation

suited for capturing the gist of scenexl][ while local

features better depict properties of obje@8, (3]. As A number of methods have been proposed to attack the tag

shown previously in content-based image sea#d@h42], relevance estimation problem, [L5, 19, 23, 24, 36, 45, 56,

image annotation10, 28], and video concept detection 57]. We structure them in terms of the main rationale they

[43, 44], fusing multiple visual features is benebcial. Souse, which is expressed in the following three forms, i.e.,

it is safe for us to envisage that tag relevance estimatiarsual consistencylp, 19, 24, 36, semantic consistenc${],

will also benebt from the joint use of diverse featuresand visualbsemantic consisten2g, [56]. Given two images

The question isvhat is the best stratedg maximize such labeled with the same tag, the visual consistency-based meth

benebt? ods conjecture that if one image is visually closer to images
Concerning fusion strategies, Snoekakt[35] propose labeled with the tag than the other image, then the former

the taxonomy of early fusion and late fusion, which eomimage is more relevant to the tag. Liuaef24] employ ker

bine multiple sources of information at different stages. nel density estimation in a visual feature space to bnd such

early and late fusion schemes equally effediiveexploit  visually close images, while Sun at [36] exploit visual

ing diverse features for measuring social tag relevancednsistency to quantify the representativeness of an image

Moreover, for both schemes, supervised learning -tectwith respect to a given tag. We introduce a neighbor voting

niques have been developed to optimize fusion weightsjgorithm which infers the relevance of a tag with respect to

see for instance2p, 41]. In principle, the learned weights, an image by counting its visual neighbors labeled with that

obtained at the cost of learning from many manuallyag [L9). Lee etal. [15 brst identify tags which are suited for

labeled examples, should be better than uniform weightdescribing the visual content by a dictionary lookup. Later,

which simply treat individual features (in early fusion) andthey apply the neighbor voting algorithm to the identiped

individual tag relevance estimators (in late fusion) equallytags. To take into account negative examples of a tag which

However, this Ocommon senseO is not necessarily vadick ignored in the above works, Cherakt[4] train SVM

for social media, which is large scale, miscellaneous, amtiodels for individual tags. Li and Snoeld] take one step

dynamically changes. Towards coping with the many tagiirther by training SVM models with relevant positive and

and many images in social media, it is worthy to @sk: negative examples. Zhu at [57] investigate semantic cen

supervised fusion a must? sistency, measuring the relevance of a tag to an image in
Towards answering the above questions, we make therms of its semantic similarity to the other tags assigned to
following contributions: the image, ignoring the visual content of the image itself. Sun

etal. [37] propose to use the position information of the tags,

1. We propose visual tag relevance fusion as an extensi@md tags appearing top in the list are considered more relevant.
of tag relevance estimation for social image retrievalTo jointly exploit visual and semantic consistency, Lialet
Using the neighbor voting algorithm as a base tag reld23 perceive tag relevance estimation as a semi-supervised
vance estimatorl)], we present a systematic study onmulti-label learning problem, while Zhu at. [56] formu-
early and late tag relevance fusion. We extend the basste the problem as decomposing an image tag co-occurrence
estimator for both early and late fusion. Our previousnatrix. Yang etl. [46] present a joint image tagging frame
work [20], which discusses late tag relevance fusiorwork which simultaneously rePnes the noisy tags and learns
only, is a special case of this work. image classibers. Gao &t [7, 8] propose to improve tag-

2. Experiments on a large benchmaBt fhow that tag based image search by visual-text joint hypergraph learning.
relevance fusion leads to better image search. I paGiven initial image search results, the authors view the top
ticular, late fusion which combines both content-basedanked images as positive instances, and re-rank the search
[19, 24] and semantic-base87] tag relevance estima results by hypergraph label propagation. In all the above meth
tors yields the best performance. Tag relevance fusioods, only a single feature is considered. How to effectively
is also found to be helpful for acquiring better trainingexploit diverse features for tag relevance estimation remains
examples from socially tagged data for visual concepbpen. It is also unclear whether fusing the individual and het

learning. erogeneous measurements of tag relevance is benebcial.
3. This study offers a practical solution to exploit diverse
visual features in estimating image tag relevance. 2.2 Visual fusion

The problem we study lies at the crossroads of social tag
relevance estimation and visual fusion. So next we preseBhoek etal. [35 classify methods for visual fusion into
a short review of both areas. two groups: early fusion and late fusion. We follow their
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Tag relevance fusion for social image retrieval

taxonomy to organize our literature review on visualto specify a distance function for the given feature. The

fusion. In early fusion, a straightforward method is to-conoptimal distance varies in terms of taskg][ As the visual

catenate individual features to form a new single featurfeatures used in this work, e.g., color correlogram and bag

[35]. As feature dimensionality increases, the method subf visual words, are histogram based, we choosg, tiie-

fers from the curse of dimensionalit$. Another disad tance. We us8, ;x to represent thk nearest visual neigh

vantage of the method is the difbculty to combine featurdsors of x, retrieved by thé; distance on.. The neighbor

into a common representatio®d]. Instead of feature cen voting version ofj(x, w) is computed as

catenation, another method is to combine visual similari Sxzk! Sul . [Sul

ties of the individual featured., 28, 43. In these works, g(x,w) = 2k’ Wl 1wl (1)

multiple visual (dis)similarities are linearly combined, with k ISI

the combination weights optimized by distance metriavhere| a is the cardinality of a set. The tef8y sk ! Swl

learning techniques. In the context of video concept detecs the number of neighbor images labeled withEqua

tion, Wang etal. [43] also choose linear fusion to combinetion (1) shows that more neighbor images labeled with the

similarity graphs debned by different features. In a recenég induce larger tag relevance scores, and in the meantime,

work for bne-grained image categorizati®&@][ an image common tags with high frequency and thus less descriptive

is divided into multi-level hierarchical cells, and spatiallyare suppressed by the second term.

adjacent cells are employed to describe the discriminative In what follows, we develop early and late fusion vari

object components in a coarse-to-Pne manner. Graphletats of the neighbor voting algorithm, with a conceptual

are introduced ing1, 55] to describe multiple aspects of diagram illustrated in FidL.

an image including spatial relationships between pixels

and their color/texture distribution. In late fusion, mod

els are obtained separately on the individual features addTag relevance fusion

their output is later combined(), 44]. In the work by Wu

et al. [44], base classibers are trained using distinct fead.1 Problem formalization

tures, and the output of the base classibers forms a new

feature vector for obtaining a bnal classiber. Wangl.et From an information fusion perspectivg],[ diversity in

[40] combine the base classibers in a boosting frameworkase tag relevance estimators is important for effective

To the best of our knowledge, visual fusion in the tag relfusion. We generate multiple tag relevance estimators by

evance estimation context has not been well explored in tharying the visual featurg the number of neighboks or

literature. both. For a given feature, as a larger set of visual neigh
bors always include a smaller set of visual neighbors, the
parametek has a relatively limited impact on the diversity.

3 Base tag relevance estimators Hence, we bxX and diversify the base estimators using
diverse visual features. L&t ={z,...,zZn} be a set of

For a valid comparison between early and late fusion, weuch features, argj(x, w) be a base estimator specibed by

shall choose the same base tag relevance estimators featurez, i = 1,...,m. We adapt the notion of early and

both fusion schemes. Thus, before delving into the discuate fusion, dePning

sion about tag relevance fusion and its solutions, we Prst Early tag relevance fusioRusion schemes that integrate

make our choice of base estimators. For the ease ef candividual features before estimating social tag relevance

sistent description, we useto denote an image, amdfor  scores.

a social tag. Leg(x,w) be a base tag relevance function Late tag relevance fusioRusion schemes that brst use

whose output is a conbdence score of a tag being relevandlividual features to estimate social tag relevance scores

to an image. Further, & be a source set of social-taggedseparately, and then integrate the scores.

images, an®,, the set of images labeled with S,, ! S. We useG®(x, w) to denote a fused tag relevance estimator

A base estimator should be data driven and favorablgbtained by early fusion, ai@l(x, w) to denote a late fused

exploit the large amount of social data. Moreover, it shouléstimator. The goal of tag relevance fusion is to construct a

be generic enough to adapt to both early and late fusioB(x,w), let it beGE(x,w) in early fusion ané'(x, w) in late

In that regard, we choose the neighbor voting algorithrfusion, so that whes(x, w) is used as an image-ranking

proposed in our previous workq]. Despite its simplicity, criterion, better image retrieval is obtained compared to

recent studies3[7, 39] report that this algorithm remains image retrieval using a single-feature estimator.

the state of the art for tag relevance estimation. To Pnd Since linear fusion is a well-accepted choice for vis

visual neighbors frong for a given imagex, we usez(x) ual fusion as discussed in Se2t2, we follow this con

to represent a specibc visual feature vector. We also havention for tag relevance fusion. For early fusion, we
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Fig. 1 Extending the neighbor voting algorithm @) garly tag rel
evance fusion and] late tag relevance fusion. Given an imagéif-

!

neighbor sets are combined to obtain a better neighbor set for-tag rel
evance estimation, while in late tag relevance fusion, we fuse multiple
ferent textured backgroundsdicate its visual neighbors obtained by tag relevance estimates
distinct visual features. In ealry tag relevance fusion, multiple visual

aim for a better neighbor set by combining visual simi In a similar fashion, we debne the linear late fused tag rel
larities debPned by the features. Concretely, given two evance function:

imagesx andx', let d;(x, x') be their visual distance coem
puted in terms of featurg. We debne the combined dis
tance as

Gl (x,w) = . ! &gi(x, W). 4)
i=1

d! (X, X!) = . !i é.di(X, X!)! (2)
i=1

4.2 Solutions fortag relevance fusion

As distinct features are of varied dimensions and scales, the
where!; is a weight indicating the importance gf The resultant visual distance scores (and tag relevance scores)
subscript is to make the dependence of the fused distanazften reside at varied scales. Score normalization is, thus,
on {!;} explicit. We choose features which are intellectu necessary before fusion.
ally devised, so we assume that they are better than ran
dom guess, meaning adding them is helpful for measuring}2.1 Score normalization
the visual similarity. Hence, we constrain our solution with
Ii 1 0. Since normalizing weights by dividing by their sumWe employ two popular strategies, i.e., MinMax and Rank
does not affect image ranking, any linear fusion with-nonMax. Using a specibc tag relevance estimgiot, w) as an
negative weights can be transformed to a convex combinaxample, its MinMax normalized version is debned as:
tion. So we enforce {2;!i = 1. . o

Let Sk x be theI k1 nearest neighbors retrieved by g(x,w) = Gix, W) ! mm(g. (x,w)) , (5)
S, max(gi(x, w)) ! min(gi(x, w))

di (x,x'). Substituting it forSy zk in (1) leads to the early
where the min (max) function returns the minimum (maxi

fused tag relevance function:
| mum) possible score. The RankMax normaliggd, w) is
[Sxt k! Sul T( Sul . ||S\SAI| (3) dePned as:

G (x,w) =
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Tag relevance fusion for social image retrieval

rank(gi(x, w)) g the combined tag relevance estimator. In the following,
Ny ' ©6) we describe two learning algorithms for the two fusion
schemes, respectively.

@(x,w) = 1!

whererank(gi(x, w)) returns the rank of image when

sorting images by;i(x, w) in descending order. Compared 4.2.3.1 Supervised early fusion Optimizing fusion

to MinMax, RankMax quantizes scores into discrete ranksyeights at the distance level is essentially distance metric

making it more robust to outliers. learning. We opt to use the distance learning algorithm

Intuitively, for early (late) tag relevance fusion, betterintroduced by Wang edl. [41], for its effectiveness for

features (estimators) should have larger weights. Compareaulti-feature neighbor search. The basic idea is to bnd a

to the simplest solution that treats individual features andombined distance to force images from the same class to

base estimators equally, it is not surprising that when wiee close, whilst images from different classes to be dis

have access to many well-labeled examples, a better sotant. This is achieved by solving the following objective

tion can be learned. However, for many tags, well-labeletunction:

examples are often of limited availability, making the study " " # #,

of unsupervised fusion necessary. Therefore, we study ! S N |

tag relevance fusion in both unsupervised and supervisg Imm ' exp , i adi(x, x) yx) . (9)

settings. XX =
where(x, x') is a pair of images randomly sampled from the

4.2.2 Unsupervised tag relevance fusion training datay(x,x') = 1if the two images have labels in
common, ang/(x,x') = 0 otherwise.

In an unsupervised setting, we have no prior knowledge of

which feature or its resultant estimator is most appropri4.2.3.2 Supervised late fusion Viewing the based esti

ate for a given tag. According to the principle of maximunmators{gi(x,w)} as individual ranking criteria for image

entropy [L3], one shall make the least assumption aboutetrieval, we tackle supervised late tag relevance fusion as

things we do not know. Hence, when no prior informatiora learning-to-rank problem. Lanetric(G'! (X,w)) be a per

concernind! i} is available, we shall use uniform weights.formance metric function which measures the effectiveness

Following this thought, we consider fusion by averaging. of G| (x,w) on a training set. We seék that maximizes
Emetric:

4.2.2.1 Unsupervised early fusion The fused distance

di (x,x') is the averaged value ff (x, X')}, i.e., arqmafmetric(Glg (X, w)). (10)

1m

avg(X, x) = m di(x,X). @)
i=1

Among many learning-to-rank algorithms, the coordinate
ascent algorithm, developed by Metzler and Croft in the
domain of document retrievaB(], can directly optimize
4.2.2.2 Unsupervised Late Fusion The corresponding (non-differentiable) rank-based performance metrics, e.g.,
G{ (x,w) is simply the average ¢d;i(x, w)}: Average Precision and NDCG. In the context of image
auto-annotation1[7], we observe that weights learned by
coordinate ascent consistently outperform uniform weights
for combining multiple meta classibers. We, therefore,
employ coordinate ascent for supervised late tag relevance
Notice that fusing the RankMax normalized functions withfusion.

the uniform weights is equal to Borda Count, a common As a variant of hill climbing, coordinate ascent attempts
algorithm for combining rankings generated by multipleto Pnd! that maximize€Emetric in an iterative manner. In

[m

Ghyg(%, W) = o Gikw). 8
i=1

sources of evidencéd] each iteration, a better solution is found by changing a
single element of the solution, i.e., the weight correspond
4.2.3 Supervised tag relevance fusion ing to a specibc base estimator. In particular! ;& the

parameter being optimized. We conduct a bi-direction line
In an supervised setting, we aim to learn optimal fusiosearch with increasing steps to bnd the optimal viglue
weights from many labeled examples. For early tag relf the search succeeds, i.&;, yields a largeEmetric, we
evance fusion, this is to optimize the combined distancepdate!; with !{. Then, the next parametéy: ; is acti
so that the percentage of relevant neighbors will increaseated, and the same procedure applies. The optimization
and consequently better tag relevance estimation jsrocess continues until the objective function no longer
achieved. For late tag relevance fusion, this is to optimizicreases.
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The two fusion schemes, combined with specibe nofTable 1 Datasets used in our experiments

malization and weighting methods, result in the following Source set  NUS-WIDE
12 solutions: —
Training Test
1. Early-minmax-average: early fusion with MinMax No. images 815,320 155,545 103,688
normalization and uniform weights; No. users 177,871 40,202 32,415
2. Early-rankmax-average: early fusion with RankMaxnpo. tags 34,429 28,367 25,278
normalization and uniform weights; No. ground-truthed tags ~ N.A. 81 81

3. Early-minmax-learning: early fusion with MinMax
normalization and fusion weights optimized by-dis
tance metric learning; by quantizing densely sampled SIFT descriptors using a

4. Early-rankmax-learning: early fusion with RankMax precomputed codebook of size 1,0388][ We will refer
normalization and fusion weights optimized by-dis to the four base estimators using the corresponding feature
tance metric learning; names.

5. Early-minmax-learning: early fusion with MinMax
normalization and fusion weights optimized per-con
cept by distance metric learning; 5 Experimental setup

6. Early-rankmax-learnint: early fusion with RankMax
normalization and fusion weights optimized per-con 5.1 Datasets
cept by distance metric learning;

7. Late-minmax-average: late fusion with MinMax nor 5.1.1 Source set foconstructing base estimators
malization and uniform weights;

8. Late-rankmax-average: late fusion with RankMax To instantiateS, we use a public set of 3.5 million images
normalization and uniform weights; collected from Flickr in our previous worklg]. Since

9. Late-minmax-learning: late fusion with MinMax Ror batch-tagged images tend to be visually redundant, we
malization and fusion weights optimized by coerdi remove such images. Also, we remove images having no
nate ascent; tags corresponding to WordNet. After this preprocessing

10. Late-rankmax-learning: late fusion with RankMax step, we obtain a compact set of 815K images.
normalization and fusion weights optimized by ecoor
dinate ascent; 5.1.2 Benchmark data
11. Late-minmax-learninf: late fusion with MinMax
normalization and fusion weights optimized per-con We choose NUS-WIDE5], a widely used benchmark set
cept by coordinate ascent; for social image retrieval. This set contains over 250K
12. Late-rankmax-learnint: late fusion with RankMax Flickr images> with manually veribed annotations for 81
normalization and fusion weights optimized per-contags which correspond to an array of objects, scenes, and

cept by coordinate ascent. event. As given in Tabl&, the NUS-WIDE set consists of
two predebned subsets, one training set with 155,545
4.3 Constructing base tag relevance estimators images and one testing set of 103,688 images.

As discussed in Seat.], the parametet does not contrib 5.2 Experiments

ute signibcantly for diversifying the base estimators. We

empirically Pxk to be 500. Concerning the featufg$, we  5.2.1 Tag-based image retrieval

choose the following four visual features which describe

image content in different aspects: COLOR, CSLBP, GISTWe evaluate the effectiveness of tag relevance fusion in
and DSIFT. COLOR is a 64-dimensional global featurghe context of tag-based image retrieval, that is, for each
[16], combining a 44-d color correlogram, a 14-d textureof the 81 test tags, we sort images labeled with that tag in
moments, and a 6-d RGB color moments. CSLBP is a 80dkscending order by (fused) tag relevance scores.
center-symmetric local binary pattern histogrdrti [ cap

turing local texture distributions. GIST is a 960-d feature

describing dominant spatial structures of a scene by a ST 0 //oan.

ttp://pan.baidu.com/s/1gdd3dBH
of perceptual measures such as naturalness, openness, f"ﬂ p://lms.comp.nus.edu.sg/research/NUS-WIDE.htrAs  some

roughness d1]. DSIFT is a 1,024-d bag of visual words jmages are no longer available on Flickr, the dataset used in this
depicting local information of the visual content, obtainecbaper are a bit smaller than the original release.
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BaselinesAs our goal is to study whether tag relevancerlable 2 Performance of social image retrieval with and without tag
fusion helps, the single-feature neighbor votiag]fis a  "elevance fusion
natural baseline. For a more comprehensive comparisomethod mAP mNDCG
we implement the following three present-day methods: tdg -
position B7], tag ranking 24], and semantic bel&dT]. As aselines

tag ranking requires a specibc visual feature for kernel deﬁagpos'.t'or.‘ 0.560 0.605
sity estimation in the feature space, we try tag ranking witfematcrield 0.577 0.607
each of the four features. TagRankingo,or 0.578 0.59
Evaluation criteria We use average precision (AP), 129RaNKiNgsier 0.577 0.591
which is in wide use for evaluating visual search engines 29RanKINgs1 0.575 0.589
We also report normalized discounted cumulative gain29Rankingsier 0.577 0.596
(NDCG), commonly used to assess the top few ranketf9ReEoLor 0.625 0.712
results of web search enginek?] We compute NDCG  T@9Retsier 0.588 0.657
for the top 100 ranked results. For overall comparisons29Rekist 0.621 0.710
we average AP and NDCG scores over concepts, reporting9Rebsirr 0.636 0.719
mAP and mNDCG. Early tag relevance fusion
Test of statistical signipcand¥e conduct signibPcance Early-minmax-average 0.646 0.734
tests, with the null hypothesis that there is no difference iRarly-rankmax-average 0.662* 0.756*
mAP (or mNDCG) of two image retrieval systems. In-par Early-minmax-learning 0.657+* 0.749+
ticular, we use the randomization test as recommended B§rly-rankmax-learning 0.664* 0.755*
Smucker eal. [34]. Early-minmax-learning 0.658** 0.749+*
Early-rankmax-learnirit 0.665 0.756
5.2.2 Visual concept learning witiveak labeling Late tag relevance fusion
Late-minmax-average 0.660* 0.749*
In this experiment, we apply tag relevance fusion to seleckte-rankmax-average 0.652* 0.739
better training examples for visual concept learning. Theate-minmax-learning 0.665** 0.753*
resultant concept classibers will enable us to search imagege-rankmax-learning 0.659** 0.745*
that are totally unlabeled. Concretely, for each test tag, Wete-minmax-learninit 0677 0.773+
select its positive training examples from the NUS-WIDE ate_rankmax-learniric 0.673*" 0.767%*

training set, by sorting images in descending order by Late=
minmax-average, and preserve the top 100 ranked image%t. the signibcance level of 0.01, the symbol * indicates that a fused

. L tag relevance is better than the best single-feature tag relevance
We consider SemanticField afidgReto, o as two base (TagRehg 7)., While the symbol # indicates that a supervised fusion

lines, applying them separately to acquire another two SeSpetter than its unsupervised counterpart
of 100 positive training examples. As the focus is to-com

pare which positive set is better, the same negative- train
ing data shall be used. We take a random subset of 1,0@%el of 0.01. For a better understanding of the results, we
images from the NUS-WIDE training set as the commomake a per-concept comparison, see EigCompared to
negative set, albeit more advanced methods for negatitiee best base estimator, tag relevance fusion improves
sampling exist21]. Fast intersection kernel SVM&T] are AP scores for the majority of the concepts. This can be
trained with the DSIFT feature, and later applied to classifpbserved from Fig2 that the blue markers, representing
the NUS-WIDE test set. early fusion, and the red markers, representing late fusion,
are mostly on the right side. Further, for each concept, we
check the best performer among the four base estimators.

6 Results We Pnd that for 21 conceptf®gRetq o iS the best, 2
concepts foifagRetg g, 25 concepts fofagReg;, 51, and

6.1 Tagbased image retrieval 34 concepts folfagRepg - Then, for every concept, we
compare Early-rankmax-average and Late-minmax-aver

6.1.1 Tag relevance fusion verssmgle tag relevance age with the conceptOs best performer, which are concept

dependent. For 30 concepts, Early-rankmax-average out
As Table2 shows, the best base estimatofagRephger  performs the best performers, while Late-minmax-average
with mAP of 0.636 and mNDCG of 0.719. Except forbeats the best performers for 46 concepts. These results
Early-minmax-average, all the other fusion solutions argustify the effectiveness of visual fusion for improving tag
signibcantly better thaifagRehg =1, at the signibcance relevance estimation.
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Fig. 2 Tag relevance fusion
versus single tag relevance: a
per-concept comparison. The
concepts are sorted in descend
ing order byTagRepg 7. Best
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6.1.2 Early tag relevance fusion verslage tag relevance  that early fusion needs to combine tens of thousands of
fusion visual neighbors, making it computationally more expen
sive than late fusion. Taking into account both effeetive
There is no signibcant difference between early and lateess and efpciency, we recommend late fusion for tag rel
fusion in unsupervised settings. Nevertheless, we obseregance fusion.
the power of early fusion for addressing concepts that are For late fusion, Late-minmax-average, with mAP of
rarely tagged. Consider OearthquakeO for instance. TH&660 and mMNDCG of 0.749, is slightly better than Late-
are only 113 images labeled with the concepSimThe rankmax-average, with mAP of 0.652 and 0.739. For 54
rare occurrence makes the base estimators mostly prooncepts, Late-minmax-average outperforms Late-rank
duce zero score for the concept. Late fusion, with learrmax-average. This result is mainly due to the fact that the
ing or not, does not add much in this case. In contrast, lyase estimators already include an effect of smoothing
directly manipulating the neighbor sets, Early-rankmaxby quantizing the visual neighborhood via neighbor vot
learning yields the best result for OearthquakeO. Noting. Extra quantization by RankMax makes tag relevance
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Table 3 Performance of tag-based image retrieval by fusing heteroTable 4 Searching unlabeled images by visual concept classibers
geneous tag relevance estimators, including the previous four bakearned from weakly labeled data
estimators, semantic beldl7], and four variants of tag ranking4]

Positive example selection mAP mNDCG
Method mAP mNDCG

SemanticField 0.119 0.271
Late-minmax-average (multimodal) 0.673 0.759 TagRekoy or 0.119 0.298
Late-minmax-learning (multimodal) 0.679 0.763 Late-minmax-average 0.127 0.339
Late-minmax-learning (multimodal) 0.70¢ 0.796

Classiberstrained on examples selected by Late-minmax-average
At the signibcance level of 0.01, the symbol # indicates that a-supdseats classiPers trained on examples selected by the two baselines
vised fusion is better than its unsupervised counterpart Bold values indicate the top performer

estimates less discriminative. Only when some base estim@.1.4 Fusing heterogeneous tag relevance estimators
tors yield large yet inaccurate values suciHasRetq o

for OrainbowO, Late-rankmax-average is preferred. To study the effect of fusing heterogeneous tag relevance
estimators, we include semantic beld and the four variants
6.1.3 Supervised fusion versussupervised fusion of tag ranking. Comparing Tabl@sand3, we bnd that fus

ing the varied estimators is helpful. Again, Late-minmax-
The supervised methods achieve the best performance faverage is comparable to Late-minmax-learning in terms
both early and late fusion, see TaBleSupervised meth of NDCG. With mAP of 0.700 and mNDCG of 0.796,
ods work particularly well for those concepts where theréate-minmax-learninfy performs best. Note that the per
is large variance in the performance of the base estiméormance difference betwedrate-minmax-learninfy and
tors. For early fusion, however, the difference betweehate-minmax-average becomes larger. The result shows
Early-rankmax-learning and Early-rankmax-average is nahat concept-dependent weights are more needed for fusing
statistically signibpcant. For late fusion, the difference irtag relevance estimators driven by varied modalities.
mMNDCG of Late-minmax-learning and Late-minmax-aver We present some image search results in BigBy
age is not statistically signibcant. We also look into-indiexploiting diverse features, tag relevance fusion is helpful
vidual concepts. Although for 49 concepts Late-minmaxfor concepts having larger inter-concept visual ambiguity
learning improves over Late-minmax-average, there arsuch as rainbow versus colorful things like balloons. We
only eight concepts having a relative improvement of morebserve from Fig3b that the annotation of NUS-WIDE is
than 5%. incomplete: a number of car images are not labeled as posi

Learning weights per concept is benepbcial. For 65 corive examples of OcarQ. This is probably because the dataset
cepts,Late-minmax-learning is better than Late-minmax- developers used a kind of active learning strategy to ease
average, and the number of concepts that have more thie workload, without exhaustively labeling the dataset.

5 % relative improvement increases from 8 to 17. Never
theless, because the weights are concept dependent, ti6e¥ Visual concept learning witiveak labeling
are inapplicable to unseen concepts.

Overall, the performance of unsupervised fusion is clos€able 4 shows the result of searching for the 81 test tags
to supervised fusion. The result seems counter-intuitive ds/ the learned classibers. Notice that because the test set
one would expect a larger improvement from superviseis treated as totally unlabeled in this experiment, the scores
learning. We attribute this to the following two reasonsare much lower than their counterparts in Tabl&/e see
First, due to vagaries of social data, for a number of corfrom Table4 that classibers trained on positive examples
cepts, the models learned from the training data do neklected by Late-minmax-average outperform classibers
generalize well to unseen test data. Second, different frotrained on positive examples selected by the other methods.
traditional learning-to-rank scenarios where features drence, tag relevance fusion is also helpful for acquiring
rankers might be just better than random gu@8k fhe better training examples for visual concept learning.
features employed in this study were intellectually designed
and shown to be effective. As shown in TaBlehe base
estimators already provide a strong starting point. Moreo/ Discussion andconclusions
ver, distinct features result in complementary neighbor sets
for early fusion and complementary tag relevance estimatdag relevance estimation is important for social image
for late fusion. All this makes fusion with uniform weights retrieval. On recognizing the limitations of a single reas
a decent choice. urement of tag relevance, we promote in this paper tag
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(d) Te

Fig. 3 Image retrieval results for test tagg Omilitary(h Ocar@®, — TagReko o [19, and the proposedLate-minmax-Learning,
OrainbowO, addOzebraO. From tiop rowto thebottom row each  respectively.Cross marksindicate false positives according to the
subbgure shows the top 15 results returned by SemanticBidld [ NUS-WIDE annotation.

relevance fusion as an extension to tag relevance esli. Tag relevance fusion improves tag relevance estima
mation. We develop early and late fusion schemes for a tion. Comparing to the four base estimators whose
neighbor voting based tag relevance estimator, and system mAP scores range from 0.588 to 0.636, fused tag rel
atically study their characteristics and performance. Image evance results in higher mAP ranging from 0.646 to
retrieval experiments on a popular benchmark set of 250K 0.677. Adding extra heterogeneous estimators lifts
images justify our bPndings as follows. mAP to 0.700.
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2. The two fusion schemes each have their merit. By5.

directly manipulating the visual neighbors, early tag
relevance fusion is more effective for addressing con; ¢
cepts that are rarely tagged. Late fusion allows us to

directly optimize image retrieval, and it is more Rex 17.

ible to handle varied tag relevance estimators.
3. Supervised fusion is meaningful only when one cang
afford per-concept optimization. Concept-independent

weighting is marginally better than averaging the bas&®.

estimators. For tag relevance fusion, we recommend
the use of Late-minmax-average as a practical-stras,

egy.

21.
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