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answering [47], and photo-based advertisements [22], 
to name a few. As users often assign tags when posting 
their images on social media, one might expect tag-based 
retrieval to be a natural and good starting point for social 
image retrieval. Compared to content-based search [6], tag-
based search potentially bypasses the semantic gap prob-
lem, and its scalability has been veriÞed by decades of text 
retrieval research [2]. However, due to varied reasons, such 
as diversity in user knowledge, levels of expertise, and tag-
ging intentions, social tagging is known to be ambiguous, 
subjective, and inaccurate [29]. Moreover, since individual 
tags are used only once per image in the social tagging 
paradigm, relevant and irrelevant tags for a speciÞc image 
are not separable by tag statistics alone. Measuring social 
tag relevance with respect to the visual content they are 
describing is essential.

For tag relevance estimation, quite a few methods have 
been proposed. For example, Liu et al. [24] propose a non-
parametric method to rank tags for a given image by kernel 
density estimation in a speciÞc visual feature space. Chen 
et al. [4] train a Support Vector Machine classiÞer per tag. 
Given an image and its social tags, Zhu et al. [57] propose 
to measure the relevance of a speciÞc tag in terms of its 
semantic similarity to the other tags. In our earlier work 
[19], a neighbor voting algorithm is introduced which 
exploits tagging redundancies among multiple users. Using 
learned tag relevance value as a new ranking criterion, bet-
ter image search results are obtained, when compared to 
image search using original tags.

Positioned in a deluge of social data, however, tag 
relevance estimation is challenging. Visual concepts, for 
example, Ôboat or ÔgardenÕ, vary signiÞcantly in terms 
of their visual appearance and visual context. A single 
measurement of tag relevance as proposed in previous 
work is limited to tackle such large variations, resulting 

Abstract Due to the subjective nature of social tag-
ging, measuring the relevance of social tags with respect 
to the visual content is crucial for retrieving the increasing 
amounts of social-networked images. Witnessing the limit 
of a single measurement of tag relevance, we introduce in 
this paper tag relevance fusion as an extension to methods 
for tag relevance estimation. We present a systematic study, 
covering tag relevance fusion in early and late stages, and 
in supervised and unsupervised settings. Experiments on 
a large present-day benchmark set show that tag relevance 
fusion leads to better image retrieval. Moreover, unsuper-
vised tag relevance fusion is found to be practically as 
effective as supervised tag relevance fusion, but without 
the need of any training efforts. This Þnding suggests the 
potential of tag relevance fusion for real-world deployment.
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1 Introduction

Searching for the ever-growing amounts of varied and 
dynamically changing images on the social web is impor-
tant for a number of applications. The applications include 
landmark visualization [14], visual query suggestion 
[48], training data acquisition [38], photo-based question 
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in suboptimal image search. At the feature level, it is now 
evident that no single feature can represent the visual con-
tent completely [9, 26, 40, 49, 54]. Global features are 
suited for capturing the gist of scenes [31], while local 
features better depict properties of objects [33, 53]. As 
shown previously in content-based image search [41, 42], 
image annotation [10, 28], and video concept detection 
[43, 44], fusing multiple visual features is beneÞcial. So 
it is safe for us to envisage that tag relevance estimation 
will also beneÞt from the joint use of diverse features. 
The question is what is the best strategy to maximize such 
beneÞt?

Concerning fusion strategies, Snoek et al. [35] propose 
the taxonomy of early fusion and late fusion, which com-
bine multiple sources of information at different stages. Are 
early and late fusion schemes equally effective for exploit-
ing diverse features for measuring social tag relevance? 
Moreover, for both schemes, supervised learning tech-
niques have been developed to optimize fusion weights, 
see for instance [25, 41]. In principle, the learned weights, 
obtained at the cost of learning from many manually 
labeled examples, should be better than uniform weights 
which simply treat individual features (in early fusion) and 
individual tag relevance estimators (in late fusion) equally. 
However, this Òcommon senseÓ is not necessarily valid 
for social media, which is large scale, miscellaneous, and 
dynamically changes. Towards coping with the many tags 
and many images in social media, it is worthy to ask: is 
supervised fusion a must?

Towards answering the above questions, we make the 
following contributions:

1. We propose visual tag relevance fusion as an extension 
of tag relevance estimation for social image retrieval. 
Using the neighbor voting algorithm as a base tag rele-
vance estimator [19], we present a systematic study on 
early and late tag relevance fusion. We extend the base 
estimator for both early and late fusion. Our previous 
work [20], which discusses late tag relevance fusion 
only, is a special case of this work.

2. Experiments on a large benchmark [5] show that tag 
relevance fusion leads to better image search. In par-
ticular, late fusion which combines both content-based 
[19, 24] and semantic-based [57] tag relevance estima-
tors yields the best performance. Tag relevance fusion 
is also found to be helpful for acquiring better training 
examples from socially tagged data for visual concept 
learning.

3. This study offers a practical solution to exploit diverse 
visual features in estimating image tag relevance.

The problem we study lies at the crossroads of social tag 
relevance estimation and visual fusion. So next we present 
a short review of both areas.

2  Related work

2.1  Social tag relevance estimation

A number of methods have been proposed to attack the tag 
relevance estimation problem [4, 15, 19, 23, 24, 36, 45, 56, 
57]. We structure them in terms of the main rationale they 
use, which is expressed in the following three forms, i.e., 
visual consistency [15, 19, 24, 36], semantic consistency [57], 
and visualÐsemantic consistency [23, 56]. Given two images 
labeled with the same tag, the visual consistency-based meth-
ods conjecture that if one image is visually closer to images 
labeled with the tag than the other image, then the former 
image is more relevant to the tag. Liu et al. [24] employ ker-
nel density estimation in a visual feature space to Þnd such 
visually close images, while Sun et al. [36] exploit visual 
consistency to quantify the representativeness of an image 
with respect to a given tag. We introduce a neighbor voting 
algorithm which infers the relevance of a tag with respect to 
an image by counting its visual neighbors labeled with that 
tag [19]. Lee et al. [15] Þrst identify tags which are suited for 
describing the visual content by a dictionary lookup. Later, 
they apply the neighbor voting algorithm to the identiÞed 
tags. To take into account negative examples of a tag which 
are ignored in the above works, Chen et al. [4] train SVM 
models for individual tags. Li and Snoek [18] take one step 
further by training SVM models with relevant positive and 
negative examples. Zhu et al. [57] investigate semantic con-
sistency, measuring the relevance of a tag to an image in 
terms of its semantic similarity to the other tags assigned to 
the image, ignoring the visual content of the image itself. Sun 
et al. [37] propose to use the position information of the tags, 
and tags appearing top in the list are considered more relevant. 
To jointly exploit visual and semantic consistency, Liu et al. 
[23] perceive tag relevance estimation as a semi-supervised 
multi-label learning problem, while Zhu et al. [56] formu-
late the problem as decomposing an image tag co-occurrence 
matrix. Yang et al. [46] present a joint image tagging frame-
work which simultaneously reÞnes the noisy tags and learns 
image classiÞers. Gao et al. [7, 8] propose to improve tag-
based image search by visual-text joint hypergraph learning. 
Given initial image search results, the authors view the top 
ranked images as positive instances, and re-rank the search 
results by hypergraph label propagation. In all the above meth-
ods, only a single feature is considered. How to effectively 
exploit diverse features for tag relevance estimation remains 
open. It is also unclear whether fusing the individual and het-
erogeneous measurements of tag relevance is beneÞcial.

2.2  Visual fusion

Snoek et al. [35] classify methods for visual fusion into 
two groups: early fusion and late fusion. We follow their 
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taxonomy to organize our literature review on visual 
fusion. In early fusion, a straightforward method is to con-
catenate individual features to form a new single feature 
[35]. As feature dimensionality increases, the method suf-
fers from the curse of dimensionality [32]. Another disad-
vantage of the method is the difÞculty to combine features 
into a common representation [35]. Instead of feature con-
catenation, another method is to combine visual similari-
ties of the individual features [10, 28, 43]. In these works, 
multiple visual (dis)similarities are linearly combined, with 
the combination weights optimized by distance metric 
learning techniques. In the context of video concept detec-
tion, Wang et al. [43] also choose linear fusion to combine 
similarity graphs deÞned by different features. In a recent 
work for Þne-grained image categorization [50], an image 
is divided into multi-level hierarchical cells, and spatially 
adjacent cells are employed to describe the discriminative 
object components in a coarse-to-Þne manner. Graphlets 
are introduced in [51, 55] to describe multiple aspects of 
an image including spatial relationships between pixels 
and their color/texture distribution. In late fusion, mod-
els are obtained separately on the individual features and 
their output is later combined [40, 44]. In the work by Wu 
et al. [44], base classiÞers are trained using distinct fea-
tures, and the output of the base classiÞers forms a new 
feature vector for obtaining a Þnal classiÞer. Wang et al. 
[40] combine the base classiÞers in a boosting framework. 
To the best of our knowledge, visual fusion in the tag rel-
evance estimation context has not been well explored in the 
literature.

3  Base tag relevance estimators

For a valid comparison between early and late fusion, we 
shall choose the same base tag relevance estimators for 
both fusion schemes. Thus, before delving into the discus-
sion about tag relevance fusion and its solutions, we Þrst 
make our choice of base estimators. For the ease of con-
sistent description, we use x to denote an image, and w for 
a social tag. Let g(x,w) be a base tag relevance function 
whose output is a conÞdence score of a tag being relevant 
to an image. Further, let S be a source set of social-tagged 
images, and Sw the set of images labeled with w, Sw ! S.

A base estimator should be data driven and favorably 
exploit the large amount of social data. Moreover, it should 
be generic enough to adapt to both early and late fusion. 
In that regard, we choose the neighbor voting algorithm 
proposed in our previous work [19]. Despite its simplicity, 
recent studies [37, 39] report that this algorithm remains 
the state of the art for tag relevance estimation. To Þnd 
visual neighbors from S for a given image x, we use z(x) 
to represent a speciÞc visual feature vector. We also have 

to specify a distance function for the given feature. The 
optimal distance varies in terms of tasks [52]. As the visual 
features used in this work, e.g., color correlogram and bag 
of visual words, are histogram based, we choose the l1 dis-
tance. We use Sx,z,k to represent the k nearest visual neigh-
bors of x, retrieved by the l1 distance on z. The neighbor 
voting version of g(x,w) is computed as

where | á | is the cardinality of a set. The term |Sx,z,k ! Sw| 
is the number of neighbor images labeled with w. Equa-
tion (1) shows that more neighbor images labeled with the 
tag induce larger tag relevance scores, and in the meantime, 
common tags with high frequency and thus less descriptive 
are suppressed by the second term.

In what follows, we develop early and late fusion vari-
ants of the neighbor voting algorithm, with a conceptual 
diagram illustrated in Fig. 1.

4  Tag relevance fusion

4.1  Problem formalization

From an information fusion perspective [3], diversity in 
base tag relevance estimators is important for effective 
fusion. We generate multiple tag relevance estimators by 
varying the visual feature z, the number of neighbors k, or 
both. For a given feature, as a larger set of visual neigh-
bors always include a smaller set of visual neighbors, the 
parameter k has a relatively limited impact on the diversity. 
Hence, we Þx k and diversify the base estimators using 
diverse visual features. Let Z = { z1, . . . , zm} be a set of 
such features, and gi (x, w) be a base estimator speciÞed by 
feature zi , i = 1,. . . , m. We adapt the notion of early and 
late fusion, deÞning

Early tag relevance fusion Fusion schemes that integrate 
individual features before estimating social tag relevance 
scores.

Late tag relevance fusion Fusion schemes that Þrst use 
individual features to estimate social tag relevance scores 
separately, and then integrate the scores.

We use Ge(x, w) to denote a fused tag relevance estimator 
obtained by early fusion, and Gl (x, w) to denote a late fused 
estimator. The goal of tag relevance fusion is to construct a 
G(x, w), let it be Ge(x, w) in early fusion and Gl (x, w) in late 
fusion, so that when G(x, w) is used as an image-ranking 
criterion, better image retrieval is obtained compared to 
image retrieval using a single-feature estimator.

Since linear fusion is a well-accepted choice for vis-
ual fusion as discussed in Sect. 2.2, we follow this con-
vention for tag relevance fusion. For early fusion, we 

(1)g(x, w) =
|Sx,z,k ! Sw|

k
"

|Sw|
|S|

,
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aim for a better neighbor set by combining visual simi-
larities deÞned by the m features. Concretely, given two 
images x and x!, let di (x, x!) be their visual distance com-
puted in terms of feature zi. We deÞne the combined dis-
tance as

where ! i is a weight indicating the importance of zi. The 
subscript !  is to make the dependence of the fused distance 
on {! i } explicit. We choose features which are intellectu-
ally devised, so we assume that they are better than ran-
dom guess, meaning adding them is helpful for measuring 
the visual similarity. Hence, we constrain our solution with 
! i ! 0. Since normalizing weights by dividing by their sum 
does not affect image ranking, any linear fusion with non-
negative weights can be transformed to a convex combina-
tion. So we enforce 

! m
i= 1 ! i = 1.

Let Sx,! ,k be the k nearest neighbors retrieved by 
d! (x, x!). Substituting it for Sx,z,k in (1) leads to the early 
fused tag relevance function:

(2)d! (x, x!) =
m!

i= 1

! i ádi (x, x!),

(3)Ge
! (x,w) =

|Sx,! ,k ! Sw|
k

"
|Sw|
|S|

.

 In a similar fashion, we deÞne the linear late fused tag rel-
evance function:

4.2  Solutions for tag relevance fusion

As distinct features are of varied dimensions and scales, the 
resultant visual distance scores (and tag relevance scores) 
often reside at varied scales. Score normalization is, thus, 
necessary before fusion.

4.2.1  Score normalization

We employ two popular strategies, i.e., MinMax and Rank-
Max. Using a speciÞc tag relevance estimator gi (x, w) as an 
example, its MinMax normalized version is deÞned as:

 where the min (max) function returns the minimum (maxi-
mum) possible score. The RankMax normalized gi (x, w) is 
deÞned as:

(4)Gl
! (x, w) =

m!

i= 1

! i ági (x, w).

(5)÷gi (x, w) =
gi (x, w) ! min(gi (x, w))

max(gi (x,w)) ! min(gi (x,w))
,

Fig. 1  Extending the neighbor voting algorithm to (a) early tag rel-
evance fusion and (b) late tag relevance fusion. Given an image x, dif-
ferent textured backgrounds indicate its visual neighbors obtained by 
distinct visual features. In ealry tag relevance fusion, multiple visual 

neighbor sets are combined to obtain a better neighbor set for tag rel-
evance estimation, while in late tag relevance fusion, we fuse multiple 
tag relevance estimates
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 where rank(gi (x, w)) returns the rank of image x when 
sorting images by gi (x, w) in descending order. Compared 
to MinMax, RankMax quantizes scores into discrete ranks, 
making it more robust to outliers.

Intuitively, for early (late) tag relevance fusion, better 
features (estimators) should have larger weights. Compared 
to the simplest solution that treats individual features and 
base estimators equally, it is not surprising that when we 
have access to many well-labeled examples, a better solu-
tion can be learned. However, for many tags, well-labeled 
examples are often of limited availability, making the study 
of unsupervised fusion necessary. Therefore, we study 
tag relevance fusion in both unsupervised and supervised 
settings.

4.2.2  Unsupervised tag relevance fusion

In an unsupervised setting, we have no prior knowledge of 
which feature or its resultant estimator is most appropri-
ate for a given tag. According to the principle of maximum 
entropy [13], one shall make the least assumption about 
things we do not know. Hence, when no prior information 
concerning {! i } is available, we shall use uniform weights. 
Following this thought, we consider fusion by averaging.

4.2.2.1 Unsupervised early fusion  The fused distance 
d! (x, x!) is the averaged value of {di (x, x!)}, i.e.,

4.2.2.2 Unsupervised Late Fusion  The corresponding 
Gl

! (x,w) is simply the average of {gi (x, w)}:

Notice that fusing the RankMax normalized functions with 
the uniform weights is equal to Borda Count, a common 
algorithm for combining rankings generated by multiple 
sources of evidence [1].

4.2.3  Supervised tag relevance fusion

In an supervised setting, we aim to learn optimal fusion 
weights from many labeled examples. For early tag rel-
evance fusion, this is to optimize the combined distance 
so that the percentage of relevant neighbors will increase, 
and consequently better tag relevance estimation is 
achieved. For late tag relevance fusion, this is to optimize 

(6)ögi (x, w) = 1 !
rank(gi (x,w))

nw
,

(7)davg(x, x!) =
1
m

m!

i= 1

di (x, x!).

(8)Gl
avg(x,w) =

1
m

m!

i= 1

gi (x, w).

the combined tag relevance estimator. In the following, 
we describe two learning algorithms for the two fusion 
schemes, respectively.

4.2.3.1 Supervised early fusion  Optimizing fusion 
weights at the distance level is essentially distance metric 
learning. We opt to use the distance learning algorithm 
introduced by Wang et al. [41], for its effectiveness for 
multi-feature neighbor search. The basic idea is to Þnd a 
combined distance to force images from the same class to 
be close, whilst images from different classes to be dis-
tant. This is achieved by solving the following objective 
function:

where (x, x!) is a pair of images randomly sampled from the 
training data, y(x, x!) = 1 if the two images have labels in 
common, and y(x, x!) = 0 otherwise.

4.2.3.2 Supervised late fusion  Viewing the based esti-
mators {gi (x, w)} as individual ranking criteria for image 
retrieval, we tackle supervised late tag relevance fusion as 
a learning-to-rank problem. Let Emetric(Gl

! (x, w)) be a per-
formance metric function which measures the effectiveness 
of Gl

! (x, w) on a training set. We seek !  that maximizes 
Emetric:

 Among many learning-to-rank algorithms, the coordinate 
ascent algorithm, developed by Metzler and Croft in the 
domain of document retrieval [30], can directly optimize 
(non-differentiable) rank-based performance metrics, e.g., 
Average Precision and NDCG. In the context of image 
auto-annotation [17], we observe that weights learned by 
coordinate ascent consistently outperform uniform weights 
for combining multiple meta classiÞers. We, therefore, 
employ coordinate ascent for supervised late tag relevance 
fusion.

As a variant of hill climbing, coordinate ascent attempts 
to Þnd !  that maximizes Emetric in an iterative manner. In 
each iteration, a better solution is found by changing a 
single element of the solution, i.e., the weight correspond-
ing to a speciÞc base estimator. In particular, let ! i be the 
parameter being optimized. We conduct a bi-direction line 
search with increasing steps to Þnd the optimal value ! !

i . 
If the search succeeds, i.e., ! !

i  yields a larger Emetric, we 
update ! i with ! !

i . Then, the next parameter ! i+ 1 is acti-
vated, and the same procedure applies. The optimization 
process continues until the objective function no longer 
increases.

(9)argmin
!

!

x,x!

"

exp

"

"
m!

i= 1

! i ádi (x, x!)

#

" y(x, x!)

# 2

,

(10)argmax
!

Emetric(Gl
! (x, w)).
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The two fusion schemes, combined with speciÞc nor-
malization and weighting methods, result in the following 
12 solutions:

 1. Early-minmax-average: early fusion with MinMax 
normalization and uniform weights;

 2. Early-rankmax-average: early fusion with RankMax 
normalization and uniform weights;

 3. Early-minmax-learning: early fusion with MinMax 
normalization and fusion weights optimized by dis-
tance metric learning;

 4. Early-rankmax-learning: early fusion with RankMax 
normalization and fusion weights optimized by dis-
tance metric learning;

 5. Early-minmax-learning+: early fusion with MinMax 
normalization and fusion weights optimized per con-
cept by distance metric learning;

 6. Early-rankmax-learning+: early fusion with RankMax 
normalization and fusion weights optimized per con-
cept by distance metric learning;

 7. Late-minmax-average: late fusion with MinMax nor-
malization and uniform weights;

 8. Late-rankmax-average: late fusion with RankMax 
normalization and uniform weights;

 9. Late-minmax-learning: late fusion with MinMax nor-
malization and fusion weights optimized by coordi-
nate ascent;

 10. Late-rankmax-learning: late fusion with RankMax 
normalization and fusion weights optimized by coor-
dinate ascent;

 11. Late-minmax-learning+: late fusion with MinMax 
normalization and fusion weights optimized per con-
cept by coordinate ascent;

 12. Late-rankmax-learning+: late fusion with RankMax 
normalization and fusion weights optimized per con-
cept by coordinate ascent.

4.3  Constructing base tag relevance estimators

As discussed in Sect. 4.1, the parameter k does not contrib-
ute signiÞcantly for diversifying the base estimators. We 
empirically Þx k to be 500. Concerning the features {zi }, we 
choose the following four visual features which describe 
image content in different aspects: COLOR, CSLBP, GIST, 
and DSIFT. COLOR is a 64-dimensional global feature 
[16], combining a 44-d color correlogram, a 14-d texture 
moments, and a 6-d RGB color moments. CSLBP is a 80-d 
center-symmetric local binary pattern histogram [11], cap-
turing local texture distributions. GIST is a 960-d feature 
describing dominant spatial structures of a scene by a set 
of perceptual measures such as naturalness, openness, and 
roughness [31]. DSIFT is a 1,024-d bag of visual words 
depicting local information of the visual content, obtained 

by quantizing densely sampled SIFT descriptors using a 
precomputed codebook of size 1,024 [33]. We will refer 
to the four base estimators using the corresponding feature 
names.

5  Experimental setup

5.1  Datasets

5.1.1  Source set for constructing base estimators

 To instantiate S, we use a public set of 3.5 million images1 
collected from Flickr in our previous work [19]. Since 
batch-tagged images tend to be visually redundant, we 
remove such images. Also, we remove images having no 
tags corresponding to WordNet. After this preprocessing 
step, we obtain a compact set of 815K images.

5.1.2  Benchmark data

 We choose NUS-WIDE [5], a widely used benchmark set 
for social image retrieval. This set contains over 250K 
Flickr images,2 with manually veriÞed annotations for 81 
tags which correspond to an array of objects, scenes, and 
event. As given in Table 1, the NUS-WIDE set consists of 
two predeÞned subsets, one training set with 155,545 
images and one testing set of 103,688 images.

5.2  Experiments

5.2.1  Tag-based image retrieval

We evaluate the effectiveness of tag relevance fusion in 
the context of tag-based image retrieval, that is, for each 
of the 81 test tags, we sort images labeled with that tag in 
descending order by (fused) tag relevance scores.

1 http://pan.baidu.com/s/1gdd3dBH.
2 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm. As some 
images are no longer available on Flickr, the dataset used in this 
paper are a bit smaller than the original release.

Table 1  Datasets used in our experiments

Source set NUS-WIDE

Training Test

No. images 815,320 155,545 103,688

No. users 177,871 40,202 32,415

No. tags 34,429 28,367 25,278

No. ground-truthed tags N.A. 81 81

http://pan.baidu.com/s/1gdd3dBH
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Baselines As our goal is to study whether tag relevance 
fusion helps, the single-feature neighbor voting [19] is a 
natural baseline. For a more comprehensive comparison, 
we implement the following three present-day methods: tag 
position [37], tag ranking [24], and semantic Þeld [57]. As 
tag ranking requires a speciÞc visual feature for kernel den-
sity estimation in the feature space, we try tag ranking with 
each of the four features.

Evaluation criteria We use average precision (AP), 
which is in wide use for evaluating visual search engines. 
We also report normalized discounted cumulative gain 
(NDCG), commonly used to assess the top few ranked 
results of web search engines [12]. We compute NDCG 
for the top 100 ranked results. For overall comparisons, 
we average AP and NDCG scores over concepts, reporting 
mAP and mNDCG.

Test of statistical signiÞcance We conduct signiÞcance 
tests, with the null hypothesis that there is no difference in 
mAP (or mNDCG) of two image retrieval systems. In par-
ticular, we use the randomization test as recommended by 
Smucker et al. [34].

5.2.2  Visual concept learning with weak labeling

In this experiment, we apply tag relevance fusion to select 
better training examples for visual concept learning. The 
resultant concept classiÞers will enable us to search images 
that are totally unlabeled. Concretely, for each test tag, we 
select its positive training examples from the NUS-WIDE 
training set, by sorting images in descending order by Late-
minmax-average, and preserve the top 100 ranked images. 
We consider SemanticField and TagRelCOLOR as two base-
lines, applying them separately to acquire another two sets 
of 100 positive training examples. As the focus is to com-
pare which positive set is better, the same negative train-
ing data shall be used. We take a random subset of 1,000 
images from the NUS-WIDE training set as the common 
negative set, albeit more advanced methods for negative 
sampling exist [21]. Fast intersection kernel SVMs [27] are 
trained with the DSIFT feature, and later applied to classify 
the NUS-WIDE test set.

6  Results

6.1  Tag-based image retrieval

6.1.1  Tag relevance fusion versus single tag relevance

 As Table 2 shows, the best base estimator is TagRelDSIFT, 
with mAP of 0.636 and mNDCG of 0.719. Except for 
Early-minmax-average, all the other fusion solutions are 
signiÞcantly better than TagRelDSIFT, at the signiÞcance 

level of 0.01. For a better understanding of the results, we 
make a per-concept comparison, see Fig. 2. Compared to 
the best base estimator, tag relevance fusion improves 
AP scores for the majority of the concepts. This can be 
observed from Fig. 2 that the blue markers, representing 
early fusion, and the red markers, representing late fusion, 
are mostly on the right side. Further, for each concept, we 
check the best performer among the four base estimators. 
We Þnd that for 21 concepts TagRelCOLOR is the best, 2 
concepts for TagRelCSLBP, 25 concepts for TagRelGIST, and 
34 concepts for TagRelDSIFT. Then, for every concept, we 
compare Early-rankmax-average and Late-minmax-aver-
age with the conceptÕs best performer, which are concept 
dependent. For 30 concepts, Early-rankmax-average out-
performs the best performers, while Late-minmax-average 
beats the best performers for 46 concepts. These results 
justify the effectiveness of visual fusion for improving tag 
relevance estimation.

Table 2  Performance of social image retrieval with and without tag 
relevance fusion

 At the signiÞcance level of 0.01, the symbol * indicates that a fused 
tag relevance is better than the best single-feature tag relevance 
(TagRelDSIFT), while the symbol # indicates that a supervised fusion 
is better than its unsupervised counterpart

Method mAP mNDCG

Baselines

TagPosition 0.560 0.605

SemanticField 0.577 0.607

TagRankingCOLOR 0.578 0.596

TagRankingCSLBP 0.577 0.591

TagRankingGIST 0.575 0.589

TagRankingDSIFT 0.577 0.596

TagRelCOLOR 0.625 0.712

TagRelCSLBP 0.588 0.657

TagRelGIST 0.621 0.710

TagRelDSIFT 0.636 0.719

Early tag relevance fusion

Early-minmax-average 0.646 0.734

Early-rankmax-average 0.662* 0.756*

Early-minmax-learning 0.657*,# 0.749*,#

Early-rankmax-learning 0.664* 0.755*

Early-minmax-learning+ 0.658*,# 0.749*,#

Early-rankmax-learning+ 0.665* 0.756*

Late tag relevance fusion

Late-minmax-average 0.660* 0.749*

Late-rankmax-average 0.652* 0.739

Late-minmax-learning 0.665*,# 0.753*

Late-rankmax-learning 0.659*,# 0.745*

Late-minmax-learning+ 0.677* ,# 0.773*,#

Late-rankmax-learning+ 0.673*,# 0.767*,#
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6.1.2  Early tag relevance fusion versus late tag relevance 
fusion

 There is no signiÞcant difference between early and late 
fusion in unsupervised settings. Nevertheless, we observe 
the power of early fusion for addressing concepts that are 
rarely tagged. Consider ÔearthquakeÕ for instance. There 
are only 113 images labeled with the concept in S. The 
rare occurrence makes the base estimators mostly pro-
duce zero score for the concept. Late fusion, with learn-
ing or not, does not add much in this case. In contrast, by 
directly manipulating the neighbor sets, Early-rankmax-
learning yields the best result for ÔearthquakeÕ. Notice 

that early fusion needs to combine tens of thousands of 
visual neighbors, making it computationally more expen-
sive than late fusion. Taking into account both effective-
ness and efÞciency, we recommend late fusion for tag rel-
evance fusion.

For late fusion, Late-minmax-average, with mAP of 
0.660 and mNDCG of 0.749, is slightly better than Late-
rankmax-average, with mAP of 0.652 and 0.739. For 54 
concepts, Late-minmax-average outperforms Late-rank-
max-average. This result is mainly due to the fact that the 
base estimators already include an effect of smoothing 
by quantizing the visual neighborhood via neighbor vot-
ing. Extra quantization by RankMax makes tag relevance 

Fig. 2  Tag relevance fusion 
versus single tag relevance: a 
per-concept comparison. The 
concepts are sorted in descend-
ing order by TagRelDSIFT. Best 
viewed in color
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estimates less discriminative. Only when some base estima-
tors yield large yet inaccurate values such as TagRelCOLOR 
for ÔrainbowÕ, Late-rankmax-average is preferred.

6.1.3  Supervised fusion versus unsupervised fusion

 The supervised methods achieve the best performance for 
both early and late fusion, see Table 2. Supervised meth-
ods work particularly well for those concepts where there 
is large variance in the performance of the base estima-
tors. For early fusion, however, the difference between 
Early-rankmax-learning and Early-rankmax-average is not 
statistically signiÞcant. For late fusion, the difference in 
mNDCG of Late-minmax-learning and Late-minmax-aver-
age is not statistically signiÞcant. We also look into indi-
vidual concepts. Although for 49 concepts Late-minmax-
learning improves over Late-minmax-average, there are 
only eight concepts having a relative improvement of more 
than 5 %.

Learning weights per concept is beneÞcial. For 65 con-
cepts, Late-minmax-learning+ is better than Late-minmax-
average, and the number of concepts that have more than 
5 % relative improvement increases from 8 to 17. Never-
theless, because the weights are concept dependent, they 
are inapplicable to unseen concepts.

Overall, the performance of unsupervised fusion is close 
to supervised fusion. The result seems counter-intuitive as 
one would expect a larger improvement from supervised 
learning. We attribute this to the following two reasons. 
First, due to vagaries of social data, for a number of con-
cepts, the models learned from the training data do not 
generalize well to unseen test data. Second, different from 
traditional learning-to-rank scenarios where features or 
rankers might be just better than random guess [25], the 
features employed in this study were intellectually designed 
and shown to be effective. As shown in Table 2, the base 
estimators already provide a strong starting point. Moreo-
ver, distinct features result in complementary neighbor sets 
for early fusion and complementary tag relevance estimates 
for late fusion. All this makes fusion with uniform weights 
a decent choice.

6.1.4  Fusing heterogeneous tag relevance estimators

 To study the effect of fusing heterogeneous tag relevance 
estimators, we include semantic Þeld and the four variants 
of tag ranking. Comparing Tables 2 and 3, we Þnd that fus-
ing the varied estimators is helpful. Again, Late-minmax-
average is comparable to Late-minmax-learning in terms 
of NDCG. With mAP of 0.700 and mNDCG of 0.796, 
Late-minmax-learning+ performs best. Note that the per-
formance difference between Late-minmax-learning+ and 
Late-minmax-average becomes larger. The result shows 
that concept-dependent weights are more needed for fusing 
tag relevance estimators driven by varied modalities.

We present some image search results in Fig. 3. By 
exploiting diverse features, tag relevance fusion is helpful 
for concepts having larger inter-concept visual ambiguity 
such as rainbow versus colorful things like balloons. We 
observe from Fig. 3b that the annotation of NUS-WIDE is 
incomplete: a number of car images are not labeled as posi-
tive examples of ÔcarÕ. This is probably because the dataset 
developers used a kind of active learning strategy to ease 
the workload, without exhaustively labeling the dataset.

6.2  Visual concept learning with weak labeling

Table 4 shows the result of searching for the 81 test tags 
by the learned classiÞers. Notice that because the test set 
is treated as totally unlabeled in this experiment, the scores 
are much lower than their counterparts in Table 2. We see 
from Table 4 that classiÞers trained on positive examples 
selected by Late-minmax-average outperform classiÞers 
trained on positive examples selected by the other methods. 
Hence, tag relevance fusion is also helpful for acquiring 
better training examples for visual concept learning.

7  Discussion and conclusions

Tag relevance estimation is important for social image 
retrieval. On recognizing the limitations of a single meas-
urement of tag relevance, we promote in this paper tag 

Table 3  Performance of tag-based image retrieval by fusing hetero-
geneous tag relevance estimators, including the previous four base 
estimators, semantic Þeld [57], and four variants of tag ranking [24]

 At the signiÞcance level of 0.01, the symbol # indicates that a super-
vised fusion is better than its unsupervised counterpart

Method mAP mNDCG

Late-minmax-average (multimodal) 0.673 0.759

Late-minmax-learning (multimodal) 0.679# 0.763

Late-minmax-learning+ (multimodal) 0.700# 0.796#

Table 4  Searching unlabeled images by visual concept classiÞers 
learned from weakly labeled data 

ClassiÞerstrained on examples selected by Late-minmax-average-
beats classiÞers trained on examples selected by the two baselines

Bold values indicate the top performer

Positive example selection mAP mNDCG

SemanticField 0.119 0.271

TagRelCOLOR 0.119 0.298

Late-minmax-average 0.127 0.339
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relevance fusion as an extension to tag relevance esti-
mation. We develop early and late fusion schemes for a 
neighbor voting based tag relevance estimator, and system-
atically study their characteristics and performance. Image 
retrieval experiments on a popular benchmark set of 250K 
images justify our Þndings as follows.

1. Tag relevance fusion improves tag relevance estima-
tion. Comparing to the four base estimators whose 
mAP scores range from 0.588 to 0.636, fused tag rel-
evance results in higher mAP ranging from 0.646 to 
0.677. Adding extra heterogeneous estimators lifts 
mAP to 0.700.

Fig. 3  Image retrieval results for test tags (a) ÔmilitaryÕ, b ÔcarÕ, c 
ÔrainbowÕ, and d ÔzebraÕ. From the top row to the bottom row, each 
subÞgure shows the top 15 results returned by SemanticField [57], 

TagRelCOLOR [19], and the proposed Late-minmax-Learning+ , 
respectively. Cross marks indicate false positives according to the 
NUS-WIDE annotation.
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2. The two fusion schemes each have their merit. By 
directly manipulating the visual neighbors, early tag 
relevance fusion is more effective for addressing con-
cepts that are rarely tagged. Late fusion allows us to 
directly optimize image retrieval, and it is more ßex-
ible to handle varied tag relevance estimators.

3. Supervised fusion is meaningful only when one can 
afford per-concept optimization. Concept-independent 
weighting is marginally better than averaging the base 
estimators. For tag relevance fusion, we recommend 
the use of Late-minmax-average as a practical strat-
egy.
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