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(a) A multi-modal sample acquired during an eye examination, consisting of a color fundus photo (CFP) and an array of 12 OCT B-scan images.

(b) Activation maps produced by our proposed model, showing abnormal regions in the CFP and abnormal B-scans in the OCT array.

Figure 1: Illustrating multi-modal retinal disease recognition, with (a) input and (b) output. Diseases: ERM, ME.

ABSTRACT
This paper attacks an emerging challenge of multi-modal retinal
disease recognition. Given a multi-modal case consisting of a color
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fundus photo (CFP) and an array of OCT B-scan images acquired
during an eye examination, we aim to build a deep neural net-
work that recognizes multiple vision-threatening diseases for the
given case. As the diagnostic efficacy of CFP and OCT is disease-
dependent, the network’s ability of being both selective and in-
terpretable is important. Moreover, as both data acquisition and
manual labeling are extremely expensive in the medical domain,
the network has to be relatively lightweight for learning from a
limited set of labeled multi-modal samples. Prior art on retinal dis-
ease recognition focuses either on a single disease or on a single
modality, leaving multi-modal fusion largely underexplored. We
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propose in this paper Multi-Modal Multi-Instance Learning (MM-
MIL) for selectively fusing CFP and OCT modalities. Its lightweight
architecture (as compared to current multi-head attention modules)
makes it suited for learning from relatively small-sized datasets.
For an effective use of MM-MIL, we propose to generate a pseudo
sequence of CFPs by over sampling a given CFP. The benefits of this
tactic include well balancing instances across modalities, increasing
the resolution of the CFP input, and finding out regions of the CFP
most relevant with respect to the final diagnosis. Extensive experi-
ments on a real-world dataset consisting of 1,206 multi-modal cases
from 1,193 eyes of 836 subjects demonstrate the viability of the
proposed model.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval.
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1 INTRODUCTION
Multi-modal imaging is a routine measure in the screening and
diagnosis of many diseases. Consider retinal disease diagnosis for
instance. Retinal diseases manifest themselves in various ways
in retina – a ten-layered structure covering over 200 degrees of
eye fundus. Accurate diagnoses depend on accurate localization
and visualization of the pathological alterations in this subtle and
complex structure. Images of distinct modalities are acquired during
an eye examination, including a color fundus photograph (CFP) and
an array of optical coherence tomography (OCT) B-scan images,
see Fig. 1. OCT B-scans provide cross-sectional information of
the retina and choroid, while CFPs show en face information of
the fundus. Due to such different imaging mechanisms, using a
specific modality alone is often inadequate to spot alterations for
all diseases. For dryAMD at its early stage, drusenoid pigment
epithelial detachment can be observed in OCT images, even when
its counterpart remains invisible in a CFP. Similarly for Macular
Edema (ME), its main symptom is retinal thickening. The resultant
alteration in CFP is hard exudate (not obvious in the early stage)
and that in OCT B-scan is cystoid macular edema (noticeable as the
layered structure shown in B-scan changes tangibly). Hence, OCT B-
scans play a crucial role in recognizing ME, dryAMD and wetAMD
in particular at their early stage. Meanwhile, as typical alterations
by DR include microaneurysm, retinal hemorrhage, and venous
beading, all are vascular lesions, and thus more observable in CFP
than in OCT B-scans, making CFP more suitable for DR recognition.
For EpiRetinal Membrane (ERM) and Pathological Myopia (PM),
both modalities matter. In clinical practice, ophthalmologists use
both modalities as a standard method for fundus checks. Hence,

multi-modal deep learning that effectively exploits a limited set of
labeled multi-modal samples is crucial for artificial intelligence (AI)
assisted disease diagnosis.

Previous efforts on retinal disease recognition are mostly based
on a single modality, let it be a CFP [15], an OCT image [23] or a
sequence of OCT images [7]. They are thus not directly applicable
to deal with the multi-modal input. An initial attempt on end-to-end
multi-modal learning is by Wang et al. [21], where authors present
MM-CNN, a two-stream CNN that takes a CFP and a single OCT
image as a paired input. While MM-CNN is shown to be superior
to its single-modal counterparts for categorizing subclasses of age-
related macular degeneration (AMD), the OCT image has to be
manually selected by a technician that operates the OCT device.
We argue that this requirement limits the practical use of MM-CNN,
as the technician is unlikely to be sufficiently trained to select the
most appropriate B-scan images for all diseases. Moreover, by using
only the chosen image with the other B-scans ignored, the OCT
modality is underexplored.

Multi-modal CNNs that accept a sequence of images as input
have been extensively studied in the context of video action classi-
fication [3, 11, 25]. To exploit the spatio-temporal information in
video frames, a 3D-CNN consisting of stacked 3D convolutional
blocks is commonly used, either alone [11] or in a two-stream man-
ner where another 3D-CNN runs in parallel to process the sequence
of optical flow images [3, 25]. Note that the good performance of
3D-CNNs is subject to the availability of very large-scale training
data [3]. This is however difficult to be fulfilled in the medical
domain where both data acquisition and manual labeling are expen-
sive. Moreover, as the sequence is processed as a whole, 3D-CNNs
lack an explicit mechanism to interpret the contribution per frame,
a wanted property for AI-assisted disease diagnosis. Therefore,
multi-modal CNNs with a relatively lightweight architecture and
interpretability is in demand for retinal disease recognition.

For automated screening of Retinopathy of Prematurity (ROP)
given multiple CFPs acquired per case, Li et al. [16] adapt instance-
attention based deep multiple instance learning (MIL) [17]. The
given CFPs, treated as a bag of instances, are fed in parallel into a
shared 2D-CNN for feature extraction. Such instance-level features
are weighed in terms of the corresponding attended weights and
summed up for case-level classification. The shared 2D backbone
substantially reduces the amount of trainable parameters, whilst
the attention mechanism naturally explains the contribution of
each CFP to the final prediction. Again, as [16] works on a single
modality, how to exploit MIL for the multi-modal scenario remains
open. In fact, because the CFP is clearly outnumbered by the OCT
images in a given input, extending MIL by treating the CFP and
OCT images as individual instances in a bag is problematic.

Inspired by the success of deep MIL for the ROP classification
task, we propose in this paper Multi-Modal Multi-Instance Learning
(MM-MIL) for multi-label retinal disease recognition. The overall
architecture, as illustrated in Fig. 2, follows the classical two-stream
framework [3], with MM-MIL as a novel module for multi-modal
feature fusion. To conquer the data imbalance issue and to im-
prove the resolution of the CFP channel, over sampling on CFP is
performed to form a pseudo sequence of CFPs. In sum, our contri-
butions are as follows:
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• We propose MM-MIL, a new module for multi-modal fea-
ture fusion. It inherits the interpretability of the instance-
attention based MIL. Its lightweight architecture (as com-
pared to current multi-head attention modules [20]) makes
it suited for learning from relatively small-sized datasets.

• For an effective use of MM-MIL, we propose to generate a
pseudo sequence of CFPs by over sampling a given CFP. The
benefits of this tactic are multifold, including well balancing
the samples between the CFP and OCTmodalities, increasing
the resolution of the CFP input, and finding out regions of
the CFP most relevant with respect to the final prediction.

• Extensive experiments on a real-world dataset collected
from an outpatient clinic justify the superiority of the pro-
posed method against the state-of-the-art. Compared to the
best single-modal baseline (OCT-MIL with an overall AP of
0.7748) and the best multi-modal baseline (MM-CNN++ with
AP of 0.8172), our model scores the highest AP of 0.8539.

2 RELATEDWORK
Since the seminal work by Google [10], which shows the initial
success of deep CNNs for CFP-based diabetic retinopathy (DR)
screening, many deep learning based methods have been proposed
for eye disease recognition [2, 6, 8, 9, 13, 16, 24]. The majority of the
methods target at a single disease, e.g., DR [8], Pathological Myopia
(PM) [6], Glaucoma [24] or AMD [14], and make predictions based
on a single-modal input, either a CFP or an OCT image.

Although scarce, there are emerging efforts on recognizing mul-
tiple diseases from a CFP [15] or from a sequence of OCT B-scan
images [7]. Li et al. [15] train an ensemble of SeResNext-50 to de-
tect twelve major retinal diseases. To process OCT volume data,
De Fauw et al. [7] first train a 3D-Unet to segment layers of B-scan
images, and then feed the segmentation results into a 3D-DenseNet
for multiple disease diagnosis and referral recommendation. Again,
the above methods are single-modal.

Probably due to the lack of public multi-modal data, we see few
work on multi-modal retinal disease recognition. In a pilot study
[21], Wang et al. develop a two-stream CNN termed MM-CNN for
multi-modal AMD categorization. Given a CFP and a manually cho-
sen OCT B-scan image as a paired input, MM-CNN uses a ResNet-18
to extract features from the CFP and another ResNet-18 to extract
features from the OCT image. The CFP and OCT feature vectors are
simply concatenated and fed into a regular classification block (a
linear layer followed by softmax) for categorizing the input as nor-
mal, dryAMD, or wetAMD. Despite its encouraging performance
against the single-modal alternatives, we argue that MM-CNN has
the following deficiencies. First, manual selection of one B-scan
introduces extra workload on the technician. It also affects the
model performance when there is discrepancy between the B-scan
selection strategy used in the test stage and that used for training,
see our experiments. Moreover, using merely one image per OCT
scan makes the OCT modality largely underexplored. Lastly, fusion
by feature concatenation lacks the ability of selectively exploiting
the multi-modal information for different diseases.

Technically, we are inspired by the successful use of instance-
attention based deep multiple instance learning (MIL) [17] for ROP

classification [16]. In order to capture different zones of the prema-
ture retina, an ROP examination typically collects multiple CFPs.
By viewing each CFP as an instance, Li et al. [16] formulate ROP
classification as an MIL problem. As their study is single-modal,
how to exploit MIL for the multi-modal scenario is untouched.
Straightforward solutions such as combining MM-CNN with MIL,
e.g., substituting MIL for the OCT branch in MM-CNN, are inade-
quate for multi-modal retinal disease recognition.

The state-of-the-art on multi-modal representation, e.g., cross-
attention [22] and co-attention [5], is essentially multi-head self-
attention (MHA) used in Transformer-alike architectures [20]. Com-
pared to MHA, our proposed MM-MIL performs better for the new
task yet with much less parameters. Moreover, while the inter-
pretability of Transformers is a research problem on its own [4],
MM-MIL has an explicit mechanism for model interpretability.

3 PROPOSED METHOD
Based on multi-modal fundus imaging comprised of OCT and color
fundus photography, we aim for automated categorization of the
fundus condition of a specific eye. We use 𝑥 to indicate an eye.
Its examination by a multi-modal fundus camera produces a color
fundus photograph (CFP), denoted as 𝑥𝑐 , and an array of 𝑛 OCT
B-scan images, denoted as x𝑜 = {𝑥𝑜,1, . . . , 𝑥𝑜,𝑛}. Suppose there
are𝑚 distinct categories to be considered. We aim to build a deep
neural network𝐺 that accepts the multi-modal input (𝑥𝑐 , x𝑜 ) and
produces a probabilistic vector 𝑝 accordingly,

𝑝 := 𝐺 (𝑥𝑐 , x𝑜 ), (1)

where 𝑝𝑖 denotes the probability of the eye belonging to class 𝑖 ,
𝑖 = 1, . . . ,𝑚. In what follows, we describe the overall architecture
of 𝐺 in Section 3.1, followed by MM-MIL in Section 3.2 and model
interpretation in Section 3.3.

3.1 Multi-Modal Deep Classification Network
The overall architecture is illustrated in Fig. 2. Our proposed net-
work conceptually consists of three blocks, i.e., 1) instance-level
feature extraction, 2) multi-modal feature fusion, and 3) case-level
classification.

1) Instance-level feature extraction. In order to match the
number of the instances in the OCT modality, we perform over
sampling on the original CFP to produce a sequence of 𝑛 (sub-
)images, denoted as {𝑥𝑐,1, . . . , 𝑥𝑐,𝑛}. Specifically, the multi-modal
fundus camera used in our experiments ran in a radial scan mode,
producing 𝑛 = 12 B-scans per case. Therefore, in the test stage, we
crop the four corners and the center of the original CFP with a
fixed-sized window. With horizontal flip on the big image and the
five sub-images, the over sampling operation eventually generates
12 images in total for the CFP modality.

Due to the noticeable difference in the visual appearance of CFP
and OCT, we use two 2D-CNNs to extract instance-level features for
the two modalities, respectively. The backbone of both 2D-CNNs is
ResNet-50 [12], initialized using ImageNet-pretrained models. Per
OCT instance 𝑥𝑜,𝑖 , we use 𝐹𝑜,𝑖 to denote the feature maps of size
𝑤 ×ℎ×𝑑 extracted by the OCT 2D-CNN. In a similar vein, we define
𝐹𝑐,𝑖 for a CFP instance 𝑥𝑐,𝑖 . By applying spatial-wise global average
pooling (SW-GAP) on the feature maps, we obtain 𝑛 𝑑-dimensional
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Figure 2: Proposed multi-modal retinal disease classification network in its inference mode. Given a multi-modal case with a
CFP and a sequence of 𝑛 OCT B-scan images, the network performs over sampling on the given CFP to generate a sequence of
𝑛 CFPs. The two sequences are then fed in parallel into two 2D-CNNs to extract feature maps of size𝑤 ×ℎ ×𝑑 per instance. Per
modality, spatial-wise global average pooling (SW-GAP) is applied upon the feature maps to obtain a 𝑑-dimensional feature
vector for each instance. The proposed Multi-Modal Multiple Instance Learning (MM-MIL) module with ℎ heads, see Fig. 3, ag-
gregates the 2𝑛 instance-level features into ℎ case-level features, each of which is converted into category-wise decision scores
by a linear layer. Final probabilistic prediction is obtained by mean pooling plus sigmoid activation. For model interpretation,
the featuremaps per instance are converted to a𝑤×ℎ activationmap by channel-wise global average pooling (CW-GAP). Multi-
plied by the corresponding instance-attentionweight fromMM-MIL, the activationmaps are used to visualize the contribution
of the OCT images and regions of the CFP to the prediction. Best viewed on screen.

instance-level features per modality, denoted as {𝑓𝑜,1, . . . , 𝑓𝑜,𝑛} and
{𝑓𝑐,1, . . . , 𝑓𝑐,𝑛}, respectively.

2) Multi-modal feature fusion. As shown in Fig. 2, the 2𝑛
instance-level features are simultaneously fed into our proposed
MM-MIL module, which aggregates these features into a case-level
feature 𝑓𝑚𝑚 of the same dimension 𝑑 , expressed as

𝑓𝑚𝑚 := MM-MIL({𝑓𝑐,1, . . . , 𝑓𝑐,𝑛, 𝑓𝑜,1, . . . , 𝑓𝑜,𝑛}) . (2)

3) Case-level classification. We use a linear layer to convert
𝑓𝑚𝑚 into categorize-wise decision scores. Since a specific eye might
have multiple diseases, we formulate the retinal disease recognition
task as a multi-label classification problem. As such, the sigmoid
activation is adopted. Accordingly, the generic formula given in Eq.
1 can now be realized as

𝑝 := sigmoid(𝐿𝑖𝑛𝑒𝑎𝑟𝑑×𝑚 (𝑓𝑚𝑚)) . (3)

When a multi-head MM-MIL is used to produce multiple 𝑓𝑚𝑚 , we
let each 𝑓𝑚𝑚 go through a distinct linear layer and usemean pooling

in advance to the sigmoid layer, see Fig. 2. A standard BCE loss
between 𝑝 and case-level labels is computed for model training.

Next, we detail the procedure of computing the case-level modal-
fused feature 𝑓𝑚𝑚 .

3.2 MM-MIL for Multi-Modal Feature Fusion
To make the paper self-contained, we outline the single-modality
MIL block previously used for CFP-based ROP classification [16].
Given {𝑓𝑖 } as𝑛 feature vectors extract from𝑛 CFP instances, instance-
attention weights {𝑎𝑖 } is obtained by stacking the features and
feeding them into the following feedforward network,

{𝑎𝑖 } := softmax(𝐿𝑖𝑛𝑒𝑎𝑟128×1 (tanh(𝐿𝑖𝑛𝑒𝑎𝑟𝑑×128 ({𝑓𝑖 })))) . (4)

Accordingly, a case-level feature 𝑓 is obtained as a weighted sum
of the instance-level features, i.e.,

𝑓 :=
𝑛∑
𝑖=1

𝑎𝑖 𝑓𝑖 . (5)
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In the multi-modal context, as the CFP features {𝑓𝑐,𝑖 } and OCT
features {𝑓𝑜,𝑖 } are extracted by distinct 2D-CNNs, they are not com-
parable by definition. In order to make them additive, we introduce
a cross-modal projection block, implemented as a modality-specific
linear layer followed by Layer Normalization [1], see Fig. 3. Conse-
quently, the CFP features are transformed into new features of the
same size {𝑓𝑐,𝑖 }, i.e.,

𝑓𝑐,𝑖 := LayerNorm(𝐿𝑖𝑛𝑒𝑎𝑟𝑑×𝑑 (𝑓𝑐,𝑖 )) . (6)

In a similar manner we obtain the new OCT features {𝑓𝑜,𝑖 }.
By stacking {𝑓𝑐,𝑖 } and {𝑓𝑜,𝑖 } and substituting them for {𝑓𝑖 } in

Eq. 4, we obtain instance-attention weights for the 2𝑛 multi-modal
instances, denoted by {𝑎𝑐,1, . . . , 𝑎𝑐,𝑛, 𝑎𝑜,1, . . . , 𝑎𝑜,𝑛}. By definition,
we have

∑𝑛
𝑖=1 𝑎𝑐,𝑖 +

∑𝑛
𝑖=1 𝑎𝑜,𝑖 = 1, where the first term indicates

the importance of the CFP modality and the second term indicates
the importance of the OCT modality. The case-level modal-fused
feature is computed by putting the corresponding terms into Eq. 5:

𝑓𝑚𝑚 :=
𝑛∑
𝑖=1

𝑎𝑐,𝑖 𝑓𝑐,𝑖 +
𝑛∑
𝑖=1

𝑎𝑜,𝑖 𝑓𝑜,𝑖 . (7)
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Figure 3: Proposed Multi-Modal Multiple Instance Learning
(MM-MIL) module for multi-modal feature fusion. Instance-
level CFP / OCT features are aggregated with instance-
attention weights into a case-level feature vector. A multi-
head version of MM-MIL can be obtained with ease by using
multiple instance-attention blocks.

A conceptual diagram of MM-MIL (with a single head) is shown
in Fig. 3. By using multiple instance-attention blocks, a multi-head

MM-MIL can be derived with ease. As Table 1 shows, when com-
pared to multi-head self-attention (MHA), the proposed MM-MIL
has much fewer parameters.

Table 1: The number of trainable parameters in distinct at-
tention modules. The number of depth and heads in Multi-
Head self-Attention (MHA) is denoted by 𝑑 and ℎ, respec-
tively. MM-MIL×ℎ stands for MM-MIL with ℎ heads. Even
compared with a mini-version of MHA with 𝑑 = 1 and ℎ = 1,
the MM-MIL series has substantially fewer parameters.

Attention module #Parameters
MHA(𝑑 = 1, ℎ = 1) 50.35 M
MHA(𝑑 = 4, ℎ = 4) 201.41 M
MM-MIL×1 8.67 M
MM-MIL×2 8.93 M
MM-MIL×4 9.45 M
MM-MIL×8 10.50 M

3.3 Model Interpretability
As aforementioned, the contribution of the individual instances is
subject to their attention weights {𝑎𝑐,1, . . . , 𝑎𝑐,𝑛, 𝑎𝑜,1, . . . , 𝑎𝑜,𝑛} cal-
culated by MM-MIL. Meanwhile, the feature maps of each instance
reflect how it responses spatially. Therefore, combining the two
factors enables the interpretability of our multi-modal classification
network in multiple aspects. In particular, for the OCT modality,
sorting the B-scans by their attention weights in descending order
helps select the most abnormal B-scan for further examination. For
the CFP modality, as each instance corresponds to a specific region
of the original CFP, overlaying an attention-weight based heatmap
on top of the CFP visualizes which region is the most relevant w.r.t.
the final prediction. Moreover, comparing the accumulated atten-
tion weights per modality reveals which modality the model truly
counts on for recognizing specific diseases.

For a specific instance, say𝑥𝑐,𝑖 , we compute its attention-weighed
activation map 𝐴𝑐,𝑖 as

𝐴𝑐,𝑖 := 𝑎𝑐,𝑖 · CW-GAP(𝐹𝑐,𝑖 ), (8)

where CW-GAP indicates channel-wise global average pooling that
compresses 𝐹𝑐,𝑖 into a𝑤 × ℎ feature map. For an MM-MIL with ℎ

heads, 𝑎𝑐,𝑖 is computed by 1
ℎ

∑ℎ
𝑘=1 𝑎𝑐,𝑘,𝑖 , where 𝑎𝑐,𝑘,𝑖 is the attention

weight of 𝑥𝑐,𝑖 produced by MM-MIL#𝑘 . By default, MM-MIL refers
to a four-head MM-MIL, i.e., MM-MIL×4, unless otherwise stated.

4 EVALUATION
4.1 Experimental Setup
Data collection. Due to the lack of public data for multi-modal
retinal disease recognition, we built a new dataset as follows. Multi-
modal caseswere collected using a TopconMaestro-1 (TopconCorp.,
Japan) at the outpatient clinic, the Department of Ophthalmology
in a state hospital from July 2020 to October 2020. The radial scan
mode of the Topcon fundus camera was used, allowing us to acquire
a CFP and 12 OCT B-scans simultaneously in a single examination,
see Fig. 4. A panel of four retinal experts was formed and asked
to categorize each case with respect to dozens of pre-specified
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diseases. For quality control, each case was labeled by two experts
independently. In case of disagreement, a third expert was asked to
make the final decision. Note that not all diseases had a reasonable
amount of cases for training and evaluation. Eventually, our dataset
consists of 1,206 multi-modal cases from 1,193 eyes of 836 subjects,
where each case has been labeled either as normal or categories
from six vision-threatening diseases including epiretinal membrane
(ERM), macular edema (ME), diabetic retinopathy (DR), dry age-
related macular degeneration (AMD), wet AMD and pathological
myopia (PM). The number of diseases assigned to an abnormal
case ranges from 1 to 4, with an average value of 1.44. Some of the
diseases such as DR can co-occur in both eyes of a specific subject.
Hence, to avoid any risk of data leakage, we randomly split the
data collection into three disjoint subsets, i.e., training, validation
and test, on the basis of subjects. A person (and his / her associated
samples) is exclusively assigned to one of the three subsets. The
ratio of the amount of subjects in training / validation / test is 6:2:2
approximately. Table 2 summarizes basic data statistics.

Table 2: Number of subjects, eyes and cases of each category
for training, validation and test in our experiments.

Category Training Validation Test
Subjects Eyes Cases Subjects Eyes Cases Subjects Eyes Cases

Normal 251 358 359 87 117 118 85 126 126
ERM 126 144 145 44 53 54 51 57 57
ME 95 104 105 30 35 35 36 41 41
DR 74 106 108 23 37 37 27 41 41
dryAMD 53 64 65 19 21 21 20 26 26
wetAMD 36 39 40 12 14 14 14 14 14
PM 27 35 38 10 15 15 11 14 14
Total 485 700 710 173 238 241 178 255 255

Figure 4: A multi-modal sample acquired by a Topcon
Maestro-1 fundus camera in the radial scan mode. Expert
labels: ERM and DR.

Performance metrics. In a retinal disease screening program,
a subject with her eye(s) predicted with higher probability of having
retinal diseases shall be given higher priority in a waiting list of
referrals. Hence, we report Average Precision (AP) as commonly
used to assess the quality of rankings. As secondary metrics, we
report AUC, Sensitivity (Sen.), Specificity (Spe.) and F1-score of Sen.
and Spe. For computing Sen. and Spe., we use the default threshold
of 0.5 to convert probabilistic output to hard labels.

Details of implementation. We run all experiments with Py-
Torch [18]. For a fair comparison between all models evaluated in
this study, we use the following common setup: ResNet-50 as the
backbone, with its weights initialized using an ImageNet-pretrained
model, SGD as the optimizer with momentum of 0.9 and weight de-
cay of 1𝑒−5. The initial learning rate is 0.01, with the OneCycle [19]

strategy to adjust the learning rate. The maximum number of train-
ing epochs is 50, except for the CFP-only ResNet which used 100
epochs due to its relatively slow convergence speed. Per training
sample, we use a smaller number of 6 OCT / CFP instances for the
purposes of case-level data augmentation and saving GPU memory
to use bigger batch size. In particular, random down-sampling is
conducted to select the OCT instances, while random crop is used
to generate CFP instances for training. Every instance is resized to
256 × 256. In addition, traditional low-level data augmentation is
performed on instances. For a more reliable evaluation, for each
model we repeat the training procedure three times and select the
version that maximizes AP on the validation set.

4.2 Comparison with State-of-the-art
4.2.1 Baselines. We compare the following state-of-the-art:
•MM-CNN [21]: A two-stream CNN that accepts a CFP and a man-
ually selected OCT B-scan image as a paired input. Multi-modal
feature fusion is implemented by concatenating 2,048-dimensional
ResNet-50 features of CFP and OCT. We train MM-CNN with B-
scans selected on the basis of our expert annotations.
• OCT-MIL [16]: A very recent method that uses MIL to exploit
a set of CFPs for ROP classification. We adopt its MIL module to
perform classification based on the OCT B-scan sequence.
• OCT-Conv3D: A 3D-CNN is used by [13] for OCT-based reti-
nal disease classification. However, 3D-ResNet [11] failed to con-
verge on our training data. Hence, we try an alternative solution,
which first utilizes 2D-ResNet for feature extraction. Three 3D conv.
blocks are then applied on the re-shaped feature maps to exploit the
spatio-temporal information. Global average pooling is performed
to derive a case-level feature for classification.
•MM-CNN++:We improveMM-CNN, with its original OCT branch
replaced by OCT-MIL.
• CFP: A single-modal CNN with a CFP as its input. We include
this baseline for a more comprehensive evaluation.

4.2.2 Results. The performance of MM-MIL and the baselines is
given in Table 3. Comparing the two modalities, they perform
closely on Normal and PM. The two OCT models perform clearly
better than CFP on ERM, ME, dryAMD and wetAMD. As for DR, its
main symptoms are caused by vascular lesions, which are more
vivid on color fundus photos. This explains the clear performance
gap between the OCT models and the CFP model for recognizing
DR. The result justifies the necessity of a multi-modal approach to
retinal disease recognition.

MM-CNN performs closely to OCT-MIL, the best single-modal
model. This result shows that the better performance ofmulti-modal
fusion cannot be taken as granted. Table 4 shows that MM-CNN is
sensitive to the choice of the B-scan chosen for classification.

Compared to OCT-MIL, MM-CNN++ improves the overall AP
from 0.7710 to 0.8172 (a relative improvement of 6.0%), making it
the best multi-modal baseline. The proposed MM-MIL outperforms
this strong baseline, reaching the best AP of 0.8539. It is worth
pointing out that none of the multi-modal baselines can beat the
single-modal baselines for all diseases. For instance, MM-CNN++
is less effective than the CFP model on DR. By contrast, MM-MIL
consistently outperforms the best of the single-modal baselines
on every category. Specifically, MM-MIL×4 detects Normal with
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Table 3: Performance of the state-of-the-art for retinal disease recognition. Neither of themulti-modal baselines, i.e.,MM-CNN
and MM-CNN++, can beat the best of the single-modal baselines (highlighted in lightblue cell) for all diseases. Our proposed
MM-MIL×4 does so, showing its effectiveness for multi-modal feature fusion.

Overall performance AP per categoryModel
AP AUC Sen. Spe. F1 Normal ERM ME DR dryAMD wetAMD PM

Single-modal:
CFP 0.6827 0.9025 0.6109 0.9500 0.7295 0.9830 0.5508 0.6405 0.8738 0.3879 0.5277 0.8152
OCT-MIL 0.7748 0.9281 0.6640 0.9495 0.7417 0.9775 0.7173 0.8451 0.7442 0.5045 0.8108 0.8245
OCT-Conv3D 0.7710 0.9283 0.6324 0.9370 0.7141 0.9756 0.7578 0.8390 0.6408 0.5049 0.8195 0.8597
Multi-modal:
MM-CNN 0.7743 0.9072 0.7244 0.9522 0.8128 0.9761 0.7248 0.8020 0.7607 0.5210 0.8151 0.8200
MM-CNN++ 0.8172 0.9403 0.6917 0.9612 0.7892 0.9861 0.7626 0.8429 0.8409 0.5764 0.8087 0.9030
MM-MIL× 1 0.8097 0.9261 0.7311 0.9635 0.8214 0.9888 0.7576 0.7802 0.8617 0.5326 0.8325 0.9149
MM-MIL× 2 0.8348 0.9424 0.7577 0.9664 0.8393 0.9933 0.7628 0.8409 0.8898 0.5584 0.8969 0.9014
MM-MIL× 4 0.8539 0.9545 0.7431 0.9643 0.8291 0.9940 0.7793 0.9038 0.8939 0.6220 0.9035 0.8808
MM-MIL× 8 0.8534 0.9505 0.7335 0.9720 0.8285 0.9922 0.7939 0.8633 0.9165 0.5969 0.9105 0.9006

Table 4: Performance of MM-CNN [21] given distinct B-scan
selection strategies at the test stage. Manual selection is
needed in order to maximize the performance of MM-CNN.

Which B-scan? AP AUC Sen. Spe. F1
First-frame 0.7551 0.9081 0.7199 0.9498 0.8078
Middle-frame 0.7524 0.9168 0.6490 0.9495 0.7448
Last-frame 0.7502 0.9188 0.6941 0.9532 0.7904
Manual 0.7743 0.9072 0.7244 0.9522 0.8128

an AP of 0.9940 (95% confidence interval (CI), 0.9845-1.0), and the
detection performance for the other classes are as follows: ERM
0.7793 (95% CI, 0.7048-0.8538), ME 0.9038 (95% CI, 0.8406-0.9669),
DR 0.8939 (95% CI, 0.8281-0.9597), dryAMD 0.6220 (95% CI, 0.5028-
0.7412), wetAMD 0.9035 (95% CI, 0.7964-1.0000), PM 0.8808 (95% CI,
0.7638-0.9977). MM-MIL is more selective than MM-CNN++.

4.3 Ablation Study
We now evaluate the influence of three major designs, i.e., the over
sampling strategy, the number of heads in MM-MIL, and alterna-
tives to MM-MIL, on the performance of our classification network.

4.3.1 The influence of the over sampling strategy. As Table 5 shows,
MM-MIL×1 without over sampling causes a clear performance drop,
with AP decreased from 0.8097 to 0.7872. We attribute this result to
the reason that without over sampling, the OCT instances become
dominant during the training process. Indeed, this is also confirmed
by the fact that MM-MIL×1 without over sampling performs quite
closely to OCT-MIL, suggesting that the CFP modality is mostly
underexplored. In addition, we try over sampling in the single-
modal setting, by training CFP-MIL which uses MIL to exploit the
generated sequence of CFPs. The better performance of CFP-MIL
against the CFP model (0.7357 versus 0.6827 in terms of AP) further
justifies the viability of the over sampling tactic.

4.3.2 Number of heads in MM-MIL. The performance of MM-MIL
with distinct number of heads is presented in the last four rows of
Table 3. As we have already noted, the importance of the CFP and

Table 5: Performance of MM-MIL×1 with and without over
sampling.

Over sampling? AP AUC Sen. Spe. F1
Yes 0.8097 0.9261 0.7311 0.9635 0.8214
No 0.7872 0.9286 0.6729 0.9468 0.7640

OCT modalities varies over diseases. MM-MIL with more heads
has a larger capacity to learn better instance attention. Therefore,
better performance is observed on MM-MIL×4 and MM-MIL×8,
with the latter slightly worse. Recall that we have 7 categories in
total, making MM-MIL×4 sufficient for the current task.

To better understand the behavior of MM-MIL×4, we provide
a zoom-in view in Fig. 5. Per-category performance of each head,
denoted as MM-MIL#𝑘 , is plotted in Fig. 5(a). Recall that the 𝑘-th
head produces multi-modal instance attention weights. Per case
we have (∑𝑛

𝑖=1 𝑎𝑐,𝑘,𝑖 ) + (∑𝑛
𝑖=1 𝑎𝑜,𝑘,𝑖 ) = 1. This property means for

each category, the averaged value of the accumulated attention
weights per modality reflects to what extent the head is attended.
Accordingly, we visualize in Fig. 5(b) each head’s per-category
attention weight on the CFP modality.

A joint use of Fig. 5(a) and 5(b) allows us to interpret the behavior
of a specific head. MM-MIL#4 puts more attention on CFP. Hence,
it performs well on DR and PM for which this modality is suited,
but is less effective for dryAMD and wetAMD, where lesions such
as drusen appear more vividly in OCT images. By constrast, MM-
MIL#2 pays much less attention to the CFP modality, making it the
least effective for recognizing DR and PM.

4.3.3 MM-MIL versus MHA. Table 6 shows the performance of
our multi-modal retinal disease classification network when substi-
tuting the popular MHA module for MM-MIL. The mini-version
of MHA, which has one head and one depth only, decreases AP
from 0.8539 to 0.8116. A wider and deeper MHA (𝑑 = 4 and ℎ = 4)
reduces the performance further. The results allow us to conclude
that MHA, while being extremely popular in a wide range of tasks,
is less effective than our proposed MM-MIL for multi-modal retinal
disease classification.

Poster Session 3 MM ’21, October 20–24, 2021, Virtual Event, China

2480



0.4 0.5 0.6 0.7 0.8 0.9 1.0
AP

Normal

ME

wetAMD

DR

PM

ERM

dryAMD

C
at
eg
or
ie
s

MM-MIL#1
MM-MIL#2
MM-MIL#3
MM-MIL#4
MM-MIL×4

(a) Per-category performance of each head in MM-MIL×4
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(b) Per-category attention weights on the CFP modality

Figure 5: A zoom-in view of MM-MIL×4, showing (a) per-
category performance of each of the four heads and (b) how
much attention the heads pay to the CFP modality.

Table 6: Performance of our multi-modal network with dis-
tinct fusion modules, i.e., MM-MIL versus Multi-Head self-
Attention (MHA). OurMM-MIL achieves better performance
with much fewer parameters (see Table 1).

Fusion module AP AUC Sen. Spe. F1
MHA (d=1, h=1) 0.8116 0.9442 0.7055 0.9668 0.8061
MHA (d=4, h=4) 0.8043 0.9310 0.6982 0.9589 0.8025
MM-MIL×4 0.8539 0.9545 0.7431 0.9643 0.8291

Fig. 6 shows some qualitative results of model prediction and in-
stance attention-weighed activation maps, cf. Section 3.3. Consider
Fig. 6(c) for instance. We observe that the activation area covers
the temporal side of the optic disc (the brightest region in the CFP).
This differs from the other sub-figures, neither of which has their
optic disc overlapped with the activation area. Note that for PM,
peripapillary atrophy is a clinical finding typically found in the
area surrounding the optic disc. Recall that our model is trained
exclusively on case-level labels, the result demonstrates the viability
of the activation maps for model interpretability.

5 CONCLUSIONS
We develop an end-to-end deep learning approach to multi-modal
retinal disease recognition. Extensive experiments on a real-world
dataset support the following conclusions. As the efficacy of color

(a) Expert labels: DR→ Prediction: DR (0.9542)

(b) Expert labels: wetAMD→ Prediction: wetAMD (0.9967)

(c) Expert labels: PM→ Prediction: PM (0.9992)

Figure 6: Some qualitative results of model prediction and
visualization. Numbers in parentheses are predicted scores.

fundus photography and OCT scans is disease-dependent, the abil-
ity of being both selective and interpretable is important for multi-
modal fusion. The proposed MM-MIL module possesses both prop-
erties, as demonstrated by its superior performance against the
prior art. Moreover, MM-MIL has substantially fewer parameters
than the prevalent Multi-Head self-Attention module, and thus can
be trained on relatively small-sized data. All this makes MM-MIL
attractive for AI-assisted retinal disease diagnosis.
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