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Abstract. Automated localization of optic disc and fovea is important
for computer-aided retinal disease screening and diagnosis. Compared
to previous works, this paper makes two novelties. First, we study the
localization problem in the new context of ultra-widefield (UWF) fundus
images, which has not been considered before. Second, we propose a
spatially constrained Faster R-CNN for the task. Extensive experiments
on a set of 2,182 UWF fundus images acquired from a local eye center
justify the viability of the proposed model. For more than 99% of the test
images, the improved Faster R-CNN localizes the fovea within one optic
disc diameter to the ground truth, meanwhile detecting the optic disc
with a high IoU of 0.82. The new model works reasonably well even in
challenging cases where the fovea is occluded due to severe retinopathy
or surgical treatments.
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1 Introduction

This paper studies joint localization of the optic disc (OD) and the fovea in
ultra-widefield (UWF) fundus images. Localizing the OD is a prerequisite for
computer-aided diagnosis of optic nerve diseases such as glaucoma, the progres-
sion of which is assessed by the optic cup-to-disc ratio. The fovea is responsible
for sharp central vision, so any retinal lesions observed in its surrounding area
shall be taken seriously. Automated localization of the two objects is thus crucial
for fundus image analysis.

Existing works on localizing either the OD [6,10], the fovea [4], or their com-
bination [1,7,8] deal with normal fundus images. Different from normal fundus
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(a) Normal, 45◦ field of view (b) Ultra-Widefield, 200◦ field of view

Fig. 1. Two types of fundus images. (a) A normal fundus image captures up to 15%
of the retina, showing main structures such as optic disc (green bounding box), fovea
(yellow cross) and vessel. (b) A UWF fundus image, which reaches the far peripheral
retina and covers approximately 82% of the retina. (Color figure online)

photography, a UWF fundus image provides a much larger field of view. It covers
more retinal surface, as shown in Fig. 1(b), and thus peripheral retinal lesions can
be spotted. Despite the increasing use of UWF fundus images in varied clinical
scenarios [2,3], automated localization of both OD and fovea in a UWF fundus
image has not been touched, to the best of our knowledge.

In a fundus image, the OD is an oval bright object at the nasal side of the
fovea. Meanwhile, the fovea is a small pit located at the center of the darkest
area known as macula, see Fig. 1. As the visual appearance of the two objects
seems to be vivid, a natural idea is to use a present-day object detection network,
e.g., Faster R-CNN [9]. Although there have been few CNN-based solutions for
OD and fovea localization in normal fundus images [1], we see no attempt for
exploiting any deep object detection network.

Different from objects in natural photos, the OD and the fovea are spatially
correlated. Using the optic disc diameter (DD) as a unit, the horizontal distance
between the OD and the fovea is around 2.5 DD, with the latter located slightly
below the former. For normal fundus images, some initial efforts have been made
to leverage such spatial constraints, implemented either as a two-step approach
[7] or as post-processing to refine the localization [8]. How to supervise an object
detection network with the spatial constraints remains open.

The contributions of this paper are as follows:
• We present the first study on joint localization of both OD and fovea in UWF

fundus images.
• We propose spatially constrained Faster R-CNN that effectively leverage the

spatial constraints between the OD and the fovea.
• We provide an extensive evaluation, justifying the effectiveness of the pro-

posed solutions on a real-world dataset.
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Table 1. State-of-the-art for fovea and OD localization in fundus images. This
paper goes one step further w.r.t. the target domain and the localization technique.

Fundus image Target Paper Localization method

Normal OD Zou et al. [10] Intensity-based ROIs proposal + Vessel-based verification

Meng et al. [6] Sliding window + Patch-based CNN classification

Fovea Gegundez et al. [4] OD & Vessel-based ROIs proposal + Contour finding

OD & Fovea Niemeijer et al. [7] KNN based regression

Qureshi et al. [8] Ensemble of multiple low-level OD/fovea detectors

Al-Bander et al. [1] Two-step CNN based regression

UWF OD & Fovea This work Proposed spatially constrained Faster R-CNN

2 Related Work

Good efforts have been made for automated localization of the OD [6,10], the
fovea [4], and both [1,7,8]. However, all target at normal fundus images, as we
summarize in Table 1.

For OD localization, Zou et al. [10] generate regions of interest (ROIs) by
simple intensity thresholding, and subsequently identify the OD by vessel-based
verification. Meng et al. [6] train a patch-based convolutional neural network
(CNN) to locate the OD, using sliding window to generate proposals. It predicts
only the OD center, without precise boundary.

For fovea localization, Gegundez et al. [4] assume the availability of the OD
and the vascular tree. A pixel within the fovea region is estimated, which is set
to be 2.5 optic disc diameters (DD) away from the OD center. The orientation
of the vasculature is used to determine if the pixel is on the OD’s left or right
side. Then, contour finding is performed on a 2DD×2DD sub-image centered on
the pixel to localize the fovea.

For joint localization, Niemeijer et al. [7] develop a regression model. For
each pixel in a given image, its distance to the (unknown) OD center is predicted
based on intensity and vascular features. The pixel with the smallest distance
is chosen as the OD center. In a similar vein, the fovea is localized, with the
search area enforced to be 2DD away from the detected OD center. Qureshi et
al. [8] take an ensemble approach to locate OD (fovea) by combining several
low-level OD (fovea) detectors. Among the multiple OD and fovea candidates,
the pair that best match spatial constraint is selected. More recently, Al-Bander
et al. [1] build three CNN based regression models. One CNN is used to predict
the initial centers of the OD and the fovea. With a sub-image cropped around
the predicted OD center as input, the second CNN is used to re-predict the OD
center. In a similar way, the third CNN is used to re-predict the fovea center.

Note that the majority of the previous efforts rely heavily on intensity and
vascular features [4,7,8,10]. However, such features are unreliable due to varied
factors including changes in imaging conditions, retinal disorders and surgical
treatments on the eye. The few CNN based attempts are cumbersome, as they
require either pixel-by-pixel classification [6] or a triplet of CNNs [1]. Spatial
constraints between the two objects are largely unexplored.
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3 Spatially-Constrained Joint Localization

We aim to automatically localize both OD and fovea in a given UWF fundus
image. The task differs from conventional object detection in the following two
aspects. First, there is only one OD and one fovea. Second, due to the physiologi-
cal structure of the retina, constraints on spatial locations of the two objects exit.
We hypothesize that such constraints are helpful for localizing the two objects,
especially the fovea, in challenging cases where UWF images are presented with
severe retinopathy. In order to exploit the spatial constraints, we propose two
strategies, one is an OD-guided two-step approach and the other is to directly
incorporate the constraints into the loss function of Faster R-CNN, and conse-
quently achieve a simultaneous localization in one forward computation.

3.1 Strategy 1. OD-guided Fovea Localization

The OD in a fundus image appears as a bright area where blood vessels converge.
Such a visual pattern is unique and relatively stable, making the object more
easily to be localized than the fovea. This observation motivates us to localize
the OD first, and accordingly use it as a guidance to localize the fovea. We term
this strategy OD-guided fovea localization. Note that the OD-guided strategy
conceptually resembles [7] to some extent, as both works use the OD to narrow
down the search space for fovea localization. Nonetheless, our module is end-to-
end and requires no vascular information, making the overall solution simplified.

We first train a Faster R-CNN for OD localization. While the OD is known
to be placed to the nasal side of the fovea, no laterality information is available
in our study. So at each side, a squared candidate area is heuristically estimated,
with its location and size relatively determined in the unit of the DD. The region
is cropped and fed into another Faster R-CNN trained for fovea localization.
OD-guided fovea localization implements the spatial constraints by enforcing
the object detection network to search for the fovea in the two sub-images.

This strategy is effective for reducing false alarms in the peripheral area of
the retina. However, both the training and the execution of the fovea localiza-
tion network remain independent of the OD. Moreover, two Faster R-CNNs are
required. To overcome these downsides, we consider another strategy as follows.

3.2 Strategy 2. Spatially-Constrained Loss

We train the Faster R-CNN network with a new loss which takes into account
the spatial constraints between the OD and the fovea. In order to make the paper
more self-contained, we describe briefly how Faster R-CNN works in this new
context. As an end-to-end object detection network, Faster R-CNN is composed
of a Region Proposal Network (RPN) for ROI generation and a Fast R-CNN
[5] for ROI refinement and classification. Given a UWF fundus image, the RPN
generates many bounding-box proposals and classifies them either as foreground
or as background. Proposals classified as foreground, after bounding-box regres-
sion and non-maximum suppression, are preserved as candidate ROIs. The Fast
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R-CNN then classifies these ROIs into one of the three classes, i.e., OD, fovea
and background. In order to get a reliable set of ROIs to represent the OD, we
let OD-ROIs consist of ROIs predicted as OD with scores larger than 0.5. In a
similar vein we obtain fovea-ROIs. For better localization, these chosen OD-ROIs
and fovea-ROIs are further fed into a bounding-box regression subnetwork.

With the OD-ROIs and fovea-ROIs identified, we exploit the spatial con-
straint in two aspects, one is distance-based and the other is direction-based.
Let d(OD, fovea) be the Euclidean distance between the averaged center of
OD-ROIs and fovea-ROIs. We define a distance-based loss lossd as

lossd := max(0, dmin − d(OD, fovea)) + max(0, d(OD, fovea) − dmax), (1)

where dmin and dmax are the 2nd and the 98th percentiles of the OD-fovea
distances calculated using the ground truth of our training data. Whenever the
distance is smaller than dmin or larger than dmax, a loss occurs.

To consider the direction-based constraint, we compute the angle between the
averaged center of OD-ROIs and that of fovea-ROIs, denoted by θ(OD, fovea).
The value is positive if the fovea is below the OD, and negative otherwise. Note
that in a well-positioned fundus image, the fovea shall be placed slightly below
the OD. However, minor rotations might occur in practice. We therefore consider
the upper bound only, defining a direction-based loss lossθ as

lossθ := max(0, abs(θ(OD, fovea)) − θmax), (2)

where the upper bound θmax is the 98th percentile of the angles, computed using
the same ground truth as used for obtaining dmin and dmax.

By adding the above two losses to the original loss of Faster R-CNN (denoted
as lossfr), we obtain the new spatially-constrained loss losssc as

Losssc := lossfr + λ1 · lossd + λ2 · lossθ, (3)

where λ1 and λ2 are two positive weights controlling the influence of the distance-
based and direction-based losses, respectively. Based on a hold-out validation set,
we empirically set λ1 = 0.002 and λ2 = 0.1.

4 Evaluation

4.1 Experimental Setup

Data. As no public dataset is available, we acquire 2,182 UWF images from our
collaborating eye center, with manually labeled bounding boxes of the OD and
the coordinate of the fovea. The dataset is divided at random into three disjoint
subsets for training, validation and test, respectively, with a ratio of 4:1:1.5. To
avoid over-fitting, the data split is based on patients s so images from a specific
patient appear only in one subset.

Implementation. Original images are downsized from 3900×3072, to 762×600.
We implement Faster R-CNN with VGGNet-16 as their backbone. Per model,
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the top-ranked OD-ROI is used as the final OD region, while the center of the
top-ranked fovea-ROI is used as the predicted coordinate of the fovea.

Evaluation Criteria. As the OD is an area and the fovea is a point to be local-
ized, we use Intersection over Union (IoU) for OD and the Euclidean distance
between the center of predicted box and the center of ground true for fovea.
Overall performance is obtained by averaging scores of all test images.

Table 2. Performance of different models for optic disc/fovea localization.
The operator [[·]] computes accuracy, i.e., the rate of test images satisfying a given
criterion. Per test image, DD is the vertical disc diameter of the ground truth. The
proposed spatially constrained Faster R-CNN models achieve the best joint localization.

Model Optic Disc (OD) Fovea

IoU [[IoU ≥ 0.5]] Distance Std. [[< 1
5DD]] [[< 1

4DD]] [[< DD]]

Baselines:

OD Faster R-CNN 0.8445 0.9980 – – – – –

Fovea Faster R-CNN – – 35.90 140.15 0.8039 0.8495 0.9841

Joint Faster R-CNN 0.8131 0.9881 31.24 92.59 0.8039 0.8475 0.9841

Spatially Constrained:

OD-guided 0.8445 0.9980 27.25 82.55 0.8019 0.8514 0.9881

losssc 0.8174 0.9960 25.29 52.47 0.8059 0.8594 0.9920

4.2 Experiment 1. Joint Localization Versus Separate Localization

The first uncertainty we need to address is the necessity of joint localization. We
train two Faster R-CNN models separately, one for the OD and the other for the
fovea. We then train another model that localizes the two objects simultaneously.

The performance of the three models is reported in the top part of Table 2.
Comparing with the two individual models, Joint Faster R-CNN performs worse
than the OD model for OD localization, while providing more precise fovea
localization than the fovea model. Note that IoU exceeding 0.80 is sufficient, as
shown in Fig. 2. So we focus our discussion on fovea localization.

Joint Faster R-CNN obtains a noticeably smaller standard deviation for fovea
localization. The result justifies the necessity of joint localization, and also sug-
gests the spatial relations between the OD and the fovea are implicitly modeled.

4.3 Experiment 2. Spatially-Constrained Joint Localization

With Joint Faster R-CNN as our baseline, we now evaluate the two proposed
strategies for spatially-constrained joint localization. Recall that the OD-guided
strategy uses the OD model in its first step, so the strategy scores the same
IoU as the baseline in Table 2. Both strategies give better fovea localization
than the baseline, suggesting the importance of explicitly modeling the spatial
constraints. Moreover, Faster R-CNN trained with the proposed loss gives the
best fovea localization with the smallest deviation (25.29±52.47). For more than
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99% of the test images, the fovea is localized within one DD to the ground truth.
We further conduct an ablation study concerning distinct spatial constraints,
i.e., distance-based, direction-based and their combination. As shown in Table 3,
the joint loss is the best.

Some qualitative results are provided in Fig. 2. From Fig. 2(a) to (e), while the
baseline incorrectly predicts the fovea on the opposite side, our improved Faster
R-CNN localizes the fovea on the correct side. For Fig. 2(f) where the macular

Table 3. The influence of distinct spatial constraints, i.e., distance-based (dmin

and dmax in Eq. 1), direction-based (θmax in Eq. 2) and their combination, on fovea
localization. Faster R-CNN trained with the joint loss (the last row) performs the best.

dmin dmax θmax Distance Std.

✓ ✘ ✘ 27.04 75.29

✓ ✓ ✘ 25.75 62.76

✓ ✓ ✓ 25.29 52.47

(a) IoU Distance
Baseline 0.410 1005.14
This paper 0.818 67.26

(b) IoU Distance
Baseline 0.829 903.17
This paper 0.864 109.37

(c) IoU Distance
Baseline 0.881 874.22
This paper 0.852 59.30

(d) IoU Distance
Baseline 0.874 785.00
This paper 0.863 58.69

(e) IoU Distance
Baseline 0.720 935.93
This paper 0.949 39.11

(f) IoU Distance
Baseline 0.842 55.44
This paper 0.844 61.02

Fig. 2. Some localization results by the baseline (Joint Faster R-CNN) and the
improved Faster R-CNN. OD and fovea are indicated by bounding boxes and crosses,
respectively. Ground truth/baseline/our results are shown in green/purple/yellow.
Below each image are IoU of the detected OD and distance of the predicted fovea
to the ground truth. Better numbers are shown in bold font. Best viewed digitally in
close-up. (Color figure online)
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area appears to be filled with silicone oil, the baseline gives a better localization.
At the cost of slightly dropping the performance of OD localization, the new
Faster R-CNN noticeably improves fovea localization.

5 Conclusions

For joint localization of OD and fovea in UWF fundus images, we recommend
to train Faster R-CNN with the proposed joint loss. As experiments on a set
of 2,182 real-world images show, for more than 99% of the test images, the
improved Faster R-CNN localizes the fovea within one DD to the ground truth,
meanwhile localizing the OD with a high IoU of 0.82.
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