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Abstract. Age-related cataract is a priority eye disease, with nuclear
cataract as its most common type. This paper aims for automated nu-
clear cataract grading based on slit-lamp photos. Different from previous
efforts which rely on traditional feature extraction and grade modeling
techniques, we propose in this paper a fully deep learning based solution.
Given a slit-lamp photo, we localize its nuclear region by Faster R-CNN,
followed by a ResNet-101 based grading model. In order to alleviate the
issue of imbalanced data, a simple batch balancing strategy is introduced
for improving the training of the grading network. Tested on a clinical
dataset of 157 slit-lamp photos from 39 female and 31 male patients, the
proposed solution outperforms the state-of-the-art, reducing the mean
absolute error from 0.357 to 0.313. In addition, our solution processes a
slit-lamp photo in approximately 0.1 second, which is two order faster
than the state-of-the-art. With its effectiveness and efficiency, the new
solution is promising for automated nuclear cataract grading.
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1 Introduction

This paper studies automated nuclear cataract grading based on slit-lamp pho-
tos. A cataract is clouding of the lens in the eye. As the lens is to focus light
rays onto the retina, such clouding leads to decrease in vision including blurry
vision, faded colors halos around light, trouble seeing at night, etc. The most
common factor of cataract is ageing [13]. Age-related cataract is reported to be
responsible for over 50% of world blindness, and thus considered as a priority
eye disease by the World Health Organization1. Nuclear cataract, which involves
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Fig. 1. Slit-lamp photos showing nuclear cataract of six scales, with scale 1.0
as the mildest and scale 6.0 as the severest. (a) Reference photos specified by the
LOCS III [3], with the nuclear area in each photo marked out by a white ellipse.
(b) Slit-lamp photos collected from a clinical scenario, with their nuclear areas (white
ellipses) labeled by ophthalmologists. (c) Intensity-based binarization on (b), required
by previous works [5, 7, 10, 15] as a prerequisite step to localize a region of interest.
Note that the white of the eye and specular highlights in the background make this
step ineffective. By contrast, we train Faster R-CNN [12], a state-of-the-art object
detection network, to directly localize the nuclear zone, see the yellow bounding boxes
with dotted borders in (b). Best viewed in digital format.

the central or nuclear area of the lens, is the most common type of age-related
cataracts [1].

In clinical practice, nuclear cataract is diagnosed by an eye examination,
where an ophthalmologist uses a slit-lamp to obtain a magnified view of the
eye structures including the nuclear area in detail. Based on the opacification
of the nuclear area, the cataract is further graded on a scale from 1.0 to 6.0. In
particular, given a slit-lamp photo, a grade is manually estimated by comparing
the photo against exemplars provided by the lens opacities classification system
LOCS III [3], see Fig. 1(a). Apparently, the manual grading process not only
requires well-trained eyes and is also time-consuming.

While automating the grading process is much in demand, challenges exist.
The first challenge is how to reliably localize the nuclear region in a relatively
complex background. Slit-lamp photos collected from a clinical scenario contain
the eyelids, the sclera and the cornea with spectral highlights, as exemplified in
Fig. 1(b). Previous works [5, 7, 10, 15] share an initial step, where a region of
interest (ROI) is roughly localized by thresholding 20% to 30% of the brightest
pixels in a gray-scale photo. However, such an intensity-based binarization can-
not cope with the background noise, as Fig. 1(c) shows. One might argue the
necessity of nuclear region localization. Indeed, we notice an early study by Fan
et al. [4] where the whole image is used. Considering that the nuclear region



Table 1. An overview of recent methods for nuclear catatract grading. Dif-
ferent from the previous works, our method is based on fully deep learning.

Method Region Detection ROI ROI Representation Grading

Li et al. [10]

Intensity-based
binarlization + Active
shape model [9]

Lens
21-d intensity and color
feature

SVM regression

Huang et al. [7] Lens
6-d intensity and color
feature

Nearest neighbor

Xu et al. [15]
Central part of
lens

12,600-d bag-of-quantized
color moment feature

Group Sparsity Regression

Gao et al. [5]
Central partof
lens

32,768-d CRNN feature SVM regression

This paper Faster R-CNN Nuclear region ResNet-101

contributes less than 3% of the pixels in a slit-lamp photo, grading based on the
whole image is suboptimal.

Given the ROI successfully localized, the second challenge is how to derive
a vectorized representation of the ROI, upon which a grading (or regression)
model will be built. Due to variance in slit-lamp photography including the
lighting condition, the skill of the technician, and the eye condition of the subject,
both intra-grade divergence and inter-grade similarity exists in the photometric
appearance of the nuclear area. Good features are thus needed. Earlier works
rely on handcrafted features. To describe the intensity and color statistics in the
lens, Li et al. [10] extract a 21-dim feature, while a shorter 6-dim feature is used
in Huang et al. [7]. Xu et al. [15] represent the central part of the lens by a
12,600-dim bag-of-quantized color moment feature. The latest work by Gao et
al. [5] employ convolutional-recursive neural networks (CRNN) [14] to extract a
32,768-dim deep feature. The authors then train an RBF-kernel SVM regression
model for nuclear cataract grading. In all the above works (Table 1), feature
extraction and the grading are separated and thus cannot be optimized jointly.

For answering the two challenges in nuclear cataract grading, this paper
makes the following contributions:

1. We propose a fully deep learning based solution, which is the first work of
its kind. In particular, we localize the nuclear region by Faster R-CNN [12].
With the nuclear region as input, a ResNet-101 [6] based grading model is
trained. In contrast to the previous works, the use of ResNet-101 allows us
to naturally achieve feature extraction and grading in a unified framework.
Hence, the proposed solution is not only more effective and also computa-
tionally more efficient.

2. Tested on a clinical dataset of 157 slit-lamp photos from 39 female and 31
male patients, our solution outperforms the state-of-the-art [5], reducing the
mean absolute error (MAE) from 0.357 to 0.313.
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Fig. 2. An illustration of the proposed fully deep learning based solution for
slit-lamp based nuclear cataract grading.

2 Proposed Solution

Given a slit-lamp photo from a specific patient having nuclear cataract, our
goal is to automatically grade the severity level of the cataract in terms of the
photometric appearance of the nuclear area. We propose a two-step solution. As
shown in Fig. 2, the nuclear region is localized by Faster R-CNN, a state-of-the-
art CNN for object detection. The second step is grading, where the detected
region is fed to a grading model with ResNet-101, a state-of-the-art CNN for
image classification, as its backbone. We use x to indicate a given photo, xnuc

for the sub-image corresponding to the nuclear area, and y ∈ [1.0, 6.0] as the
predicted grade. Accordingly, the above solution is expressed as follows,{

xnuc ← Faster R-CNN(x),
y ← ResNet-101(xnuc).

(1)

2.1 Nuclear Region Localization by Faster R-CNN

Faster R-CNN by Ren et al. [12] consists of two subnetworks, i.e., a region
proposal network (RPN) followed by a detection network. The RPN proposes
a number of bounding boxes that have the highest probability of containing
ROIs. The detection network is responsible for discriminating foreground from
background and refining the predicted location and size of the ROIs. Since a
slit-lamp photo has one nuclear region, we select the top-ranked ROI as xnuc.

To train Faster R-CNN for nuclear region localization, we adopt an SGD [2]
optimizer with its default hyper-parameters setup except for the learning rate
which is empirically set to 0.001. The mini-batch size is set to 4. The iteration is
set to 100K batches and the learning rate is decayed by 0.1 at the 60K and the
80K batch. We set three anchor scales, i.e., 3, 8 and 16 and two aspect ratios,



i.e., 1:1 and 1:4. The input image is sized to 500× 500. Nuclear regions are well
localized, with an IoU of 0.763 on average.

Note that Faster R-CNN cannot be directly used to grade a detected nuclear
region. We therefore develop a grading model as follows.

2.2 ResNet-101 based Grading

According to the LOCS III [3], the estimated grade y shall have a precision of one
decimal place. In other words, the value of y can be 1.3, 2.8, 5.3 etc. Therefore,
we formulate the grading task as a regression problem. We depart from ResNet-
101 pretrained on ImageNet [6], which requires an input size of 224 × 224. So
we resize xnuc accordingly. We substitute a regression layer for the original clas-
sification layer. We use the mean square error (MSE), a common loss function
for regression. We minimize the MSE loss by the Adam [8] optimizer with its
default hyper-parameters setup except for the learning rate, which is initially
set to 0.0001, and decayed by 0.1 every 30 epochs. An early stop occurs if the
performance on a validation set does not increase in 15 consecutive epochs. We
perform data augmentation on the detected regions, changing brightness, satu-
ration and contrast by a factor uniformly sampled from [0, 2] respectively. The
three operations are executed in a randomized order.

Batch balancing. The grades, ranging from 1.0 to 6.0, are not uniformly
distributed. In our experimental data, the amount of photos graded between 3.0
and 4.0 is the largest. When constructing a mini-batch at random, the grading
model will learn from unbalanced instances and thus become biased. To alleviate
the issue, we introduce a simple batch balancing strategy. In particular, we quan-
tize the grades into five groups, i.e., [1, 2), [2, 3), [3, 4), [4, 5) and [5, 6]. When
constructing a mini-batch, we randomly select the same amount of instances,
which is 25, from each group, making the batch fully balanced.

3 Experiments

3.1 Experimental Setup

Dataset. As we have noted, there is no public dataset available for training and
evaluating models for nuclear cataract grading. Our experiment data, provided
by our hospital partner, consists of 847 slit-lamp photos from 214 female and
141 male patients with nuclear cataract. As shown in the second row of Fig. 1,
these photos have complex background showing pupil, sclera, eyelid etc. , which
are irrelevant with respect to the task and thus noisy. The photos have been
graded collectively by six experienced ophthalmologists based on the LOCS III
criteria [3]. Besides, the experts mark out the nuclear area in each photo.

We make a patient-based data partition, dividing randomly the dataset into
three disjoint subsets, i.e., training, validation and test, at a ratio of 7:1:2. A
profile of the three subsets is shown in Table 2.

Performance metrics. Nuclear cataract grading is essentially a regression
problem, so we report the mean absolute error (MAE), a common regression



Table 2. Profile of slit-lamp photos used in this work. In order to avoid over-
fitting, a specific patient is exclusively assigned to the training, validation or test sets,
so images from the same patient appear only in one dataset. For the purpose of ap-
proximately showing the grade distribution, we quantize the grades into five groups.

Photos per group

Dataset Patients Ages Photos [1, 2) [2, 3) [3, 4) [4, 5) [5, 6]

Training 155 females + 94 males 17–95 587 73 152 209 108 45
Validation 20 females + 16 males 50–94 103 13 22 41 20 7
Test 39 females + 31 males 39–87 157 24 22 67 37 7

Table 3. Evaluating the choice of input and the influence of batch balancing
for the grading model. Lower MAE and higher Accuracy are better.

Input Batch balancing MAE Accuracy(%)

Whole image
7 0.482 67.5
3 0.362 79.6

Nuclear region
7 0.357 81.5
3 0.313 84.7

Table 4. Group-based evaluation. Lower MAE is better.

MAE per group

Input Batch balancing [1, 2) [2, 3) [3, 4) [4, 5) [5, 6]

Whole image
7 0.325 0.459 0.476 0.422 1.457
3 0.513 0.423 0.279 0.186 1.386

Nuclear region
7 0.654 0.423 0.260 0.305 0.343
3 0.454 0.309 0.313 0.197 0.443

error metric. As an absolute error smaller than 0.5 is considered acceptable in
the clinical practice, we report Accuracy, defined as the percentage of test photos
that meet this criterion.

3.2 Experiment 1. Ablation Study

Choice of the input for grading. As Table 3 shows, using the detected nuclear
region as input outperforms the whole image. Class activation maps are shown
at Fig. 3, where red colors indicate highly activated regions. For the grading
model with the whole image as input, the nuclear region is activated, suggesting
that the model can indeed focus on the correct region. However, the relatively
small ROI makes the model less effective. These results justify the necessity of
nuclear region localization.

The influence of batch balancing. As Table 3 and 4 show, batch balancing
is beneficial, regardless of the input.



Whole image:
Ground truth:

Nuclear region:

1.3 2.2 3.0 4.0 5.6
2.1 2.5 3.1 4.0 4.4
1.3 2.1 3.2 3.8 5.3

(a) Whole image

(b) CAM of whole image

(c) Nuclear region detected by Faster RCNN

(d) CAM of nuclear region

Fig. 3. Visualizing the discriminative locations of an input image for nuclear
cataract grading by class activation mapping (CAM) [16]. Each column indicates a
specific test image. The second row and the last row are CAMs obtained when using the
whole image and the detected nuclear as the input to the grading model, respectively.
Red regions show high activations. Decimals in bold font means they are more close
to the ground truth.

3.3 Experiment 2. Comparison with the State-of-the-Art

We compare with Gao et al. [5], the current state-of-the-art. As aforementioned,
their ROI detection method mostly fails on the new dataset. So for a more fair
comparison, our implementation of [5] uses the ROI found by Faster R-CNN as
a candidate region and crops it as specified in [5].

As Table 5 shows, the proposed method surpasses Gao et al. [5] in terms
of both MAE and Accuracy. Moreover, our method is computationally more
efficient. On a normal computer with a 3.6GHz six-core CPU, 64GB RAM and a



Table 5. Comparison with SOTA. Lower MAE and higher Accuracy are better.

Method MAE Accuracy(%)

Gao et al. [5] 0.357 82.2
This paper 0.313 84.7

GTX 1080ti GPU, grading an image costs approximately 0.1 second. By contrast,
the grading process of [5] takes 17 seconds per image, tested on a PC with a
four-core 2.4GHz CPU and 24GB RAM. While our machine is more powerful,
the efficiency is largely due to the fully deep learning property of our method.

The proposed method is general and can, in principle, be applied to recog-
nizing other types of cataracts, e.g., pediatric cataract [11].

4 Conclusions

A fully deep learning based solution for slit-lamp photo based nuclear cataract
grading is developed. A test set of 157 slit-lamp photos from 70 patients verifies
the effectiveness of the proposed solution. Concerning the choice of the input of
the grading model, using the nuclear region localized by Faster R-CNN is better
than using the whole image, with the mean absolute error (MAE) from 0.482 to
0.357. The proposed batch balancing strategy is also helpful, with MAE reduced
to 0.313. Consequently, the new solution surpasses the state-of-the-art which has
MAE of 0.357.
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