Video Search in Concept Subspace: A Text-Like Paradigm

Xirong Li, Dong Wang, Jianmin Li and Bo Zhang
State Key Lab. of Intelligent Tech. and System
Department of Computer Science and Technology
Tsinghua University, Beijing, 100084, China

{Ixr,wdong011@mails.tsinghua.edu.cn,{lijianmin,dcszbi@mail.tsinghua.edu.cn

ABSTRACT

Though both quantity and quality of semantic concept de-
tection in video are continuously improving, it still remains
unclear how to exploit these detected concepts as seman-
tic indices in video search, given a specific query. In this
paper, we tackle this problem and propose a video search
framework which operates like searching text documents.
Noteworthy for its adoption of the well-founded text search
principles, this framework first selects a few related con-
cepts for a given query, by employing a tf-idf like scheme,
called c-tf-idf, to measure the informativeness of the con-
cepts to this query. These selected concepts form a concept
subspace. Then search can be conducted in this concept
subspace, either by a Vector Model or a Language Model.
Further, two algorithms, i.e., Linear Summation and Ran-
dom Walk through Concept-Link, are explored to combine
the concept search results and other baseline search results
in a reranking scheme. This framework is both effective and
efficient. Using a lexicon of 311 concepts from the LSCOM
concept ontology, experiments conducted on the TRECVID
2006 search data set show that: when used solely, search
within the concept subspace achieves the state-of-the-art
concept search result; when used to rerank the baseline re-
sults, it can improve over the top 20 automatic search runs
in TRECVID 2006 on average by approx. 20%, on the most
significant one by approx. 50%, all within 180 milliseconds
on a normal PC.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.2.4 [Database Management]: Sys-
tems—multimedia databases, query processing

General Terms

Algorithms, Design, Experimentation
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1. INTRODUCTION

Multimedia Information Retrieval (MIR) has received broad
attentions in recent years, thanks to the rapidly growing
quantities of multimedia data, such as broadcast video from
thousands of TV stations worldwide, and millions of mul-
timedia resources residing in the Web, and the subsequent
huge need for accessing and managing these information ef-
fectively and efficiently. However, unlike text content which
can be retrieved by computer directly, access to video is lim-
ited to noisy text associated with the video content, such as
automatically recognized and possibly machine translated
speech, close captions, and video OCR text. The semantic
gap between visual features and real video content prevents
meaningful interpretation of the video corpora.

Organized to promote research activities in MIR, recent
benchmark campaigns like TRECVID [1] have helped and
witnessed great advances in this area as a few hundreds of
semantic concepts, also termed as High-Level Features in
the literature, can be automatically detected while scaling
to 1000+ concepts are expected in the near future. For ex-
ample, 101 concepts are defined in [24] and 834 in [13]}; 491
concepts are detected in [22], 374 in [8] and 311 in this work.
These predefined concepts includes various roles of people,
objects, scenes and events (please refer to [13] for more de-
tails on the concept definition). Treated as semantic video
index, these concepts can serve as a basis for new video
search paradigm. Intuitively, if queries can be successfully
mapped to existing semantic concepts, search performance
will improve significantly since the concept detection accu-
racy is generally much higher than the search baseline, as
already shown in past TRECVID benchmark. For exam-
ple, a query as “scenes with snow” will surely benefit from
concept “’Snow’ or even ‘Sky” since a snowy scene is often
with sky present. Besides, the concepts may serve as the
basic “visual terms” for describing the video content, which
draws the resemblance of video to text and thus enables new
approaches for both semantic search and interface design in
video retrieval.

Nonetheless, it remains unclear how to exploit these suc-
cessfully detected concepts in video search. Two research
problems arise here:

1. How to map the query to the concepts automatically,

!The 834 concepts were further filtered based on observabil-
ity to produce a fully annotated subset of 449 concepts.



reliably and in a scalable way (abbreviated as QUCOM
(query-concept-map) hereafter),

2. How to effectively search in the concept space and
combine with other modalities to improve the retrieval
performance, when the concepts related to a query are
available.

Ideally, the solution to QUCOM should be on a per query
basis, determining both the number of related concepts and
their respective weights while accounting for the varying per-
formance of the underlying concepts. Furthermore, it should
be done on-the-fly due to the realtime search need. While
adding more concepts is only a matter of labeling and train-
ing on a certain data set, it is not so easy to find a solution
which meets all the above criteria and subsequently to solve
the second problem accordingly.

There are at least two difficulties to solve QUCOM. Firstly,
it is unrealistic to assume that users can either remember
more than 50 concepts in the restricted vocabulary before
search or recall them exactly during the search process. Sec-
ondly, it is difficult to design an innovative user interface
which can display all information about the related concepts
to a query, e.g. their meaning, usefulness and detection ac-
curacy. To worsen the matter, different people may have
different understanding for the same concept name (such as
the concept “map”). Recently, methods have been designed
to utilize the detected concepts in search, such as text match
between the query keywords and the concept description or
a predefined concept ontology, regardless of the varying per-
formance of the underlying concepts [6, 23]. Neo et al. [17]
take the concept detection performance into account, yet
still use a text match approach. Moreover, these methods
ignore the visual aspect of the concepts, which might be also
of the same importance for solving QUCOM. For example, it
is not straightforward to relate “Mosques” to the query “He-
licopters in flight” or relate “Furniture” to the query “Peo-
ple reading a newspaper”. However, they are really relevant
and the connection can be mined through visual cues, cf.
Section 5.3 for details. Though concept suggestion through
user feedback works reasonably well in an interactive search
mode, it is infeasible in the automatic scenario. We focus
on the latter since user attention is a scared resource during
search.

Fortunately, example images sometimes are also provided
by the user. If treated properly, these images can establish
a direct link between the query intention and the seman-
tic concepts and thus offer a feasible solution for QUCOM.
However, few previous work is conducted in this direction.
Predicting the concepts on the example images, the result-
ing scores can be concatenated into a vector in the concept
space which is of the same dimension as the vectors of the
keyframes in the video corpus. Taking the concept space
as a whole, pseudo negative examples are drawn and a bag
of support vector machine (SVM) and k-NN classifiers are
combined to produce a ranked list [6, 15]. Another inter-
esting approach uses the concepts by a pointwise mutual
information weight scheme (PMIWS) [29] which weights all
concepts in a information theory motivated way. However,
it is clear that the query is certainly not related to all con-
cepts. Thus these two approaches may suffer from the ir-
relevant feature dimensions in the concept space, as they
overlook the QUCOM problem. When the detected con-
cepts increase in number, this problem calls for a solution
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urgently.

Viewing shot (basic video retrieval unit) as visual docu-
ment, and concept as visual term, the parallelism between
video and text document is created naturally and a large
amount of well-established approaches are thus ready to use.
Inspired by this observation, we propose a tf-idf like scheme
to solve QUCOM. Once a few related concepts are selected
for a query, they form a concept subspace in the whole con-
cept space. Then search can be conducted in this subspace,
e.g., either by a Vector Model or a Language Model, both
of which are borrowed from the text area. We further show
that direct search through concept subspace achieves the
state-of-the-art result within this modality.

Clearly, a successful video search approach should flexibly
leverage available multimodal cues for better performance.
Though search through concept subspace has showed promis-
ing results, it still cannot beat the text baseline, specifi-
cally for news video where ASR text is a strong clue of
visual content. On the other hand, the text (TXT) and
low-level visual features (LVF) modalities, when combined
(TXT+LVF) together, produce a reasonable baseline. If ap-
propriately taken into account, the concept subspace can be
a good complement to TXT+LVF. Bearing these in mind,
we combine the search result of concept subspace with re-
sults from other modalities under a reranking framework,
as it is quite exciting to see how much we can improve by
adding information from this concept subspace. Other rea-
son for adopting the reranking framework is its efficiency and
simplicity. Seen from the reranking point of view, reranking
through concept subspace provides a different perspective
from traditional reranking methods which utilizes either the
text [9, 27] or visual pseudo-positives [12, 15] by pseudo-
relevance feedback (PRF) techniques.

To sum up, in this paper we propose a video search frame-
work which operates in the concept subspace and adopts the
well-founded text search principles. Given a query, it first
solves QUCOM and constructs a concept subspace, and then
searches or reranks the TXT+LVF search results within this
concept subspace. In constructing the concept subspace, we
employ c-tf-idf, a tf-idf like scheme, to measure the infor-
mativeness of the concepts to the query. In the search pro-
cess, we rank shots either via a Vector Model or a Language
Model. In the reranking stage, we investigate two algorithms
to leverage between multiple query example images and the
baseline search results, i.e., Linear Summation and Random
Walk through Concept-Link. One advantage of this frame-
work is its effectiveness and efficiency. Using a lexicon of
311 concepts from the LSCOM concept ontology, our exper-
iments conducted on the TRECVID 2006 search data set
show that: when used solely, the concept subspace analysis
method achieves an Mean Average Precision (MAP, cf. Sec-
tion 5.1 for definition) of 0.046, which is the state-of-the-art
concept search result, to the best of our knowledge; when
used to rerank the baseline results, it can improve over the
top 20 automatic search results in TRECVID 2006 on aver-
age by approx. 20%, on the most significant one by approx.
50%, all within 180 milliseconds on a normal PC.

The rest of the paper is organized as follows. In Section
2, we present a brief introduction on generating the concept
indices. The proposed video search framework is described
in detail and experimental results are then reported in Sec-
tion 3 and Section 4, respectively. The conclusion is drawn
in Section 5.



2. GENERATING CONCEPT INDICES

Given the LSCOM concept annotation on a training set,
we follow the state-of-the-art concept detection system [7]
to build the concept indices. We filter out concepts with
less than 20 positive examples in the training set and get a
number of 311 concepts left. Our concept detection model
consists of three parts as feature extraction, modeling and
fusion.

Feature Extraction. Five kinds of features are extracted
for each keyframe, namely as follows:

e Global Color Auto-Correlogram (GAC) 64 dimensional
(dim), global color auto-correlogram extracted in the
HSV color space,

e Global Keypoint Histogram (GKH), 500 dim, global
SURF [5] keypoint histogram extracted on the gray
image,

e Edge Histogram Grid (EHG), 320 dim, localized edge
histogram extracted from a 5-region layout consisting
of four corner regions and a center region overlapping
with the other four, where 64 dim edge histogram is
extracted for each region,

e Color Moments Grid (CMG), 108 dim, localized color
extracted from a 4x3 grid and represented by the first
3 moments for each grid region in HSV color space.

e Keypoint Histogram Grid (KHG), 300 dim, localized
SURF [5] keypoint histogram from a 3x2 grid and
quantized into 50 bins for each region.

SVM Modeling. Proved by past concept detection ex-
periments [3], SVM classifier (cf. [25] for details) is appreci-
ated for its generalization ability. We follow this respectable
tradition. We choose the generalized Gaussian kernel k(z;, x;
exp(%) where D(z;,z;) is the specific distance mea-
sure since this allow us to incorporate different distance mea-
sures in the same framework. Usually the Euclidean distance
is adopted. This is the original Gaussian kernel. For the
Keypoint histogram features, the x? distance is adopted in-
stead. Given the feature and kernel, the parameters are de-
termined through cross-validation. After training the model,
a sigmoid regression is applied to convert the classifier out-
put into a posterior probability estimate which always lies
in [0,1].

A RankBoost [11] based sequential re-sampling procedure
is introduced to fully utilize the limited positive examples
for each concept. Then accordingly, five SVM classifiers
are built sequentially based on these examples. This Rank-
Boost based re-sampling procedure has two nice properties:
generate balanced positive/negative examples from the im-
balanced data set; generate a linear combination weight w;
for the produced classifier ¢;. The automatically generated
weights {w; } can be used for fusion afterwards.

Fusion. We adopt the simple weighted average fusion al-
gorithm. Given a pool of N produced classifiers associated
with their weights {c;, w;} where each ¢; defines a normal-
ized output function g; for each example z; as gi(z;), we
take the fusion function as f(z;) = vazl gi(z;). Though
simple, this function performs well for concept detection on
our internal validation data set. One possible reason for
this success is the principled resampling and weight assign-
ing procedure.
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3. CONCEPT SUBSPACE ANALYSIS
3.1 Motivation

Given the concept detection results for both the search
corpus and the query example images, a concept space is
constructed as a linear space where shots and query images
are all points in this space. It is clear that not all concept
dimensions are related to the query points, and irrelevant
ones should be abandoned before subsequent employments.
As shown in later experiments (Section 5.4), taking more
concepts into account will augment the risk of bringing in
more irrelevant and even noisy ones, and may degenerate the
retrieval performance. Therefore, an effective measurement
is required to evaluate the relevance of concepts to the query.
This process can be in general termed as query-to-concept
map (QUCOM), as discussed in Section 1.

3.2 Concept Selection via c-tf-idf Metric

From an information-theoretic point of view, the relevance
of a term to a query can be interpreted as the information
the term bears when the query is observed [2]. Motivated
by this observation, we resort to the tf-idf, the best known
term-informativeness assessment in Information Retrieval
(IR) area [4]. By viewing concepts as virtual terms (the
occurrence frequency of a concept in a shot is a real value
in [0, 1]), we can extend to the concept tf-idf (c-tf-idf). The
c-tf-idf of concept c in a shot d is defined as follows,

c—tf—idf (c,d) = freq(c,d) log(%q(c)),c eC (1)

where freq(c,d) =~ P(c|d) is the occurrence frequency of ¢
ind, freq(c) =3, freq(c,d) the occurrence frequency of c
in the corpus, N the size of the corpus, and C' the concept
set. P(c|d) is the probability of finding ¢ in d (or generating
¢ by d), estimated by the concept detectors (see Section 2).

The intuition is that more frequent concepts are more
likely to be relevant; while concepts with larger inverse doc-
ument frequency might be more distinctive. Specifically, the
tf measures the concept popularity; while the idf measures
the concept specificity. The c-tf-idf is thus a good combina-
tion of the two properties. The essence of this tf-idf based
concept selection method is to pick out concepts which max-
imally reduce the uncertainty of the corpus’s relevance to the
query [2].

For the query ¢, concepts are ranked in terms of c-tf-
1df (¢, q) as defined by Equation 1. If multiple query images
exist, we assume that they have consistent information need,
and therefore freq(c,q) = freq(c,Q) = ﬁ >gea P(c|q),
where @ is the query image set. Then the top k concepts
are selected to form a concept subspace which will be further
exploited in the subsequent search and fusion stages.

3.3 Search in Concept Subspace

From the perspective of semantic video indexing, a shot
can be decomposed into several distinctive concepts which
are relevant to the shot, in light of their visual and/or se-
mantic coherence. Concepts have the potential to bridge
the semantic gap to some extent, since they tend to capture
both the visual similarity and the semantic correlation. By
viewing concepts as visual terms and shots as visual doc-
uments, the parallelism between video and text documents
is naturally created and a large amount of well-established
approaches in the text area are thus ready to apply to the
multimedia area. With this premise, we borrow from the



text search paradigm two well-founded retrieval models, i.e.,
Vector Model and Language Model, to perform search within
the selected concept subspace.

3.3.1 Vector Model

Known as one of the most classical models in the informa-
tion retrieval field, Vector Model [4] considers a document d
and a user query q as t-dimensional vectors d and q, respec-
tively, where each dimension is a weight associated with a
distinctive term and t is the size of the term lexicon. The
relevance of d with regard to ¢ is measured by the correla-
tion between d and @, which can be quantified, for instance,
by the cosine of the angle between these two vectors.

In this context, d and ¢ are both points in the concept
space, and the relevance metric is defined as

sim(d,q) :==deq= Z w(e, d)w(c, q) (2)

ceCs

where Cs is the selected concept subset, w(c,d) the c-tf-
idf (¢, d), and w(c, q) the c-tf-idf (¢, q).

3.3.2 Language Model

In Language Model [20], each document is viewed as a
language sample, and a query as a generation process. The
retrieved documents are ranked according to the probabil-
ity of generating the query from the corresponding language
models of these documents. Specifically, by treating the
query as a sequence of terms and each term as an indepen-
dent event, the probability of producing the query can be
formalized as,

P(qld) = P(tr, ..., tm|d) = [] P(tild) (3)
i=1
where t1,...,tn is the sequence of terms in ¢, and P(¢;|d)

the probability of generating ¢; from the model of d.
We adopt Language Model by rewriting Equation 3 as,

sim(d,q) :=log P(q|d) = > freq(c,q)log P(c|ld)  (4)
ceCly

Generally in Language Model, smoothing techniques are
utilized to improve the estimation accuracy. Therefore, we
further smooth P(c|d) by the Jelienk-Mercer method [28],
that is,

Pr(cld) = (1 = A)P(c[d) + AP(c) ()

where P(c) = + Y, P(c|d) is the relative frequency of ¢ in
the corpus, and A = 0.1 throughout this study.

4. FUSION VIA RERANKING

Experiments on TRECVID benchmark show that concept-
based search is still not sufficient, as it cannot outperform
the text baseline [18]. However, if properly leveraged, the
concept modality can be a good complement to other modal-
ities (e.g., text and low-level visual feature). In this part,
we study the multi-modal fusion problem under a reranking
framework, that is, given a search result list obtained from
certain modalities (e.g., text), we target at improving the
search quality by reranking the list within the concept sub-
space. Two algorithms are investigated, respectively, i.e.,
Linear summation and random walk through concept-link.
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4.1 Linear Summation

Given a search result list, we divide the reranking process
into two steps: 1) using a retrieval model to rank shots
within the list, for instance, Vector Model and Language
Model discussed in Section 3.3; 2) linearly combining the
initial list with the reranked list, as

Simnew(d7 q) = /8 : Siminitial (d7 q) + (1 - ﬁ)Simrerank(CL q) (6)

where [ is a weighting factor, indicating the framework’s
bias on the two ranked list. Ideally, the one with higher pre-
cision should be more favored. We use an unbiased weight-
ing scheme for the sake of simplicity, i.e., setting 8 = 0.5.
In the future, we will study the potential of estimating the
search result performance, and develop an adaptive weight-
ing strategy.

With regard to sim(d,q), we use a common rank-based
normalization method [10],

sim(di, q) ~ %z —1,..N
where d; is the " shot in the ranked list, and N the list’s

length?.

Though the ranked-based normalization will lost the origi-
nal information to some extent, it has two advantages: Firstly,
it is robust as the scores assigned to each shot are smoothed.
Secondly and more importantly, it can be used when ranking
orders rather than scores are available.

4.2 Random Walk through Concept-Link

We further employ a Random Walk model, called Ran-
dom Walk through Concept-Link (RWCL), to leverage the
concept modality.

A Random Walk (RW) on a given graph G = {V, E},
where V is the vertex set of size N and E the edge set, de-
scribes how a random walker jumps among vertices following
the edges with certain probabilities. This can be character-
ized by a discrete time Markov chain which allows us to
compute the probability x, of being located in each vertex
p at time ¢. Suppose that the transition probability matrix
is P and the probability distribution over all the vertices is
x(t) = [z1(t),...,zn(t)]T, a unique stationary distribution
™ is readily derived since P is a stochastic matrix having
its maximum eigenvalue equal to one and this guarantees
the convergence (see e.g. [21], chapter 4).

Random Walk models such as PageRank [19] has showed
great success in IR area. In the PageRank model, Web pages
are connected by forward or backward hyperlinks to form a
giant graph. A walker surfs on the graph by following the
links, and may restart with a probability .

Analogous to page links in the Web, in the concept space,
points of shots and queries can be viewed as connected by
certain concept-links, as shown in Figure 1. Based on this,
we attempt to rerank the search results via Random Walk
through Concept-Link (RWCL).

We follow the PageRank algorithm, which can be formal-
ized in a compact matrix form, as shown in Equation 7.

z(t+1)=(1—-a)Wz(t) + ay (7

where x(t) is the ranking scores of all pages at time ¢, y
the initial ranking scores, a € [0,1) the restart probability
as mentioned before, and W the page-link matrix with the

2In this work, we rerank top 1000 results for each query.
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Figure 1: Random Walk through Concept-Link

sum of each column normalized to 1. Let z* denote the
limit of the sequence {z(t)}. Though the direct solution
exists (z* = (I — (1 — a)W)™'y), iterative update is used
in real applications.

In our case, y is the initial relevant scores of shots and
query points, and W the concept-link matrix. The search
results are reranked according to z*(largest ranked first).

Given the initial search result list D = {d1,...,dn} and
the query points @ = {q1,...,qm}, let y be a (N + M) x 1
vector, where y(i) = 0.5—14/N ford; € D,i=1,...,N, and
y(N +j) = 1for ¢g;j € Q,5 = 1,...,M. The intuition is
that bottom ranked shots should be penalized, while query
images are relevant since they are provided by users.

The concept-link matrix W(n4ar)x v+ is defined by

W(i,j) = Y P(cld:)P(cld;),disd; € DUQ
ceCly

where C; is the selected concept subset. We argue that
the linear kernel is a sensible metric of the concept-links,
compared with other ones, such as the common Gaussian
kernel. The main reason is that ||P(c|d;) — P(c|d;)|| cannot
tell whether the concept-link between d; and d; is strong
or weak, as both cases might have a very small || P(c|d;) —
P(c|dj)||- Note that the sum of each column in W is nor-
malized to 1 to ensure convergence.

There are two parameters in the RWCL model: a and the
iteration number. The parameter « is to control the score
propagation of a point through its concept-links. We simply
set @ = 0.01 so that the relevance scores can fully spread
within the concept subspace. With regard to the iteration
number, we find that the RWCL converges very fast and a
5-step iteration is generally sufficient.

Compared with the Linear Summation scheme, there might
be two advantages of the RWCL model: firstly, it can natu-
rally take into consideration the initial ranking orders via y;
secondly and more importantly, it may better capture the
intrinsic structure of the concept subspace by propagating
scores through concept-links.

5. EXPERIMENTS

A serial of experiments are conducted on the TRECVID
2006 (TV06) search data set to give a comprehensive evalu-
ation of the proposed paradigm.

The experiments are split into four parts: First of all, we

employ concept detectors (which are trained on the TRECVID

2005 (TV05) data set) to build the 311-concept indices. Sec-
ondly, the query-concept-map via the c-tf-idf criterion are
reported in Section 5.3. We then leverage Vector Model
and Language Model to search within the selected concept
subspace, and compare with the state-of-the-art methods
which use the same modality. And finally, the reranking
approaches are evaluated on a set of baseline search results
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which consist of the top 20 submitted runs in TV06 auto-
matic search track.

5.1 Data Set and Evaluation Metric

TRECVID is organized by NIST and provides an open,
metrics-based evaluation via a common large data set for
video retrieval and indexing techniques. The TV06 data
set consists of 150-hour multilingual news video captured
from MSNBC/NBC/CNN (English), LBC/ALH (Arabic)
and CCTV/PHOENIX/NTDTYV (Chinese), with 79, 484 shots
and an official set of 144k image keyframes. The concepts
from the LSCOM [13] multimedia concept ontology are an-
notated on an 80 hours training set on a keyframe basis.
The video data are segmented into shots and each shot is
represented by a few keyframes. Please refer to [1] for more
details about the data set.

We use all 24 multimedia search queries defined in TV06
for the experiments. They express the information need of
users for video search concerning people, things, events, lo-
cations, etc. and combinations of these needs. The per-
formance is evaluated by Average Precision (AP) on shot
level. AP is adopted as the ranking goodness measurement
since we are detecting the concepts for retrieval. Given a
ranked list L, AP is defined as & Ele % ; where R is the
number of true relevant instances in a set of size S; R; the
number of relevant instances in the top j instances; I; =1
if the j** instance is relevant and 0 otherwise. It can be
seen as an approximation to the area under the Precision-
Recall curve. The relevant shots are judged by NIST using
a pooling method. To compare results across queries, Mean
Average Precision (MAP) is defined as the mean AP scores
involved for all queries.

5.2 Concept Detection Results

We divided the whole training set into two folds, i.e., video
141 to 240 for training and video 241 to 277 for validation.
The validated MAP for all 311 concepts is 0.24. This is
comparable to the MAP of 0.26 mentioned in [8]® for 374
concepts which are also derived from the LSCOM ontology.

5.3 Query Concept Mapping Results

The QUCOM is implemented by ranking the 311 concepts
in terms of their c-tf-idf (see Section 3.2) values. The re-
sults for the 24 queries are listed in Table 1 (only top 3 con-
cepts are given due to page limitation). It can be seen that
most concepts judged relevant to the queries do make sense,
which shows the effectiveness of the c-tf-idf measurement.
For example, the three concepts Soccer, Sports, and Lawn
are brought out for the query “0195. soccer goalposts”,
and snow for the query “0196. scenes with snow”. It is
true that such kinds of concepts might also be triggered by
text-match methods, thanks to their strong semantic con-
nections to the query keywords. However, besides this kind
of concepts, we find certain concepts which are not explicitly
related to the queries, such as Us_Flags for query 0179 and
Street_Battle for query 0182. Across the baseline search re-
sults, the AP of these two queries are increased on average
by 42% and 21%, respectively, in the following reranking
stage (see Section 5.5 for details). One more example is
the query 0187 of finding helicopters in flight. The concept

3The results (0.26, 0.39) reported in [8] for 39 and 374 con-
cepts are misplaced and should be exchanged.



Table 2: The comparison of concept search methods

Method Concept Search
Lexicon Size | MAP

text match [8] 39 0.019
WordNet similarity [16] 39 0.018
lexicon mapping [16] 39 0.029
concept model vector [16] 39 0.034
PMIWS [29] 39 0.032
Language Model 39 0.038
Vector Model 39 0.040

text match [8] 374 0.024
text match [22] 491 0.044
ontology [22] 491 0.011
PMIWS [29] 311 0.025
Language Model 311 0.046
Vector Model 311 0.045

Mosques is predicted as a relevant one. It is not surpris-
ing if we notice that many shots are about the Iraq war,
and there exists the coincidence of helicopters and mosques.
All of these concepts are not easy to detect by text-match
methods. This result further shows the strength of the c-
tf-idf measurement, that is, the capability of taking into
consideration the implicit visual aspects of the concepts.

Let us revisit the QUCOM problem discussed in Section 1.
A good solution to QUCOM should automatically measure
the relevance of a specific concept to the query, and further
determine the number of concepts for subsequent employ-
ments. The c-tf-idf has showed a great potential to solve
the first problem. Still, it has difficulty to answer the latter
one. QUCOM is certainly a nontrivial and tough problem.
In the following experiments, the size of the selected con-
cepts for each query is fixed to 3 due to the lack of better
alternatives for determining the size.

5.4 Concept Search Results

In this section, we evaluate the effectiveness of the two
retrieval models, i.e., Vector Model and Language Model,
and compare them with other methods which utilize the
same modality following the same automatic search proto-
col. These methods are either variants of text match (TM)
[8, 22, 16] or based on the whole concept space [16, 29],
which are the state-of-the-art, to the best of our knowledge.
The results are organized as two parts in Table 2 according
to the concept lexicon size. The first part is on a limited lex-
icon size of 39 concepts (LSCOM-Lite [14]) and the second
one is on a much larger size.

As shown in Table 2, Vector Model and Language Model
perform comparably and scale gracefully across the two lex-
icon sizes. Moreover, they achieve the best results on both
lexicons, outperforming TM [8, 16], PMIWS, and TM [22].
It is worth noting that these performances are reached with
only approx. 60% concept lexicon size (311/491), compared
with [22].

The Impact of Concept Lexicon Size. We find that
the increase of concept lexicon size (from 39 to 311) gives rise
to significant improvements for both Vector Model and Lan-
guage Model, with 13% and 21% gains in MAP, respectively.
In contrast, for the PMIWS method, this change causes an
obvious drop on MAP (from 0.032 to 0.025 in Table 2). One
possible reason is, as PMIWS seeks to combine all concepts
by auto weighting, it may handle well when the amount of
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Figure 2: The impact of the selected concept num-
ber on the MAP performance of the 24 queries.

Table 3: Improving baseline search results via
reranking in the concept subspace. (LS+VM:
Linear Summation using Vector Model to rerank;
LS+LM: Linear Summation using Language Model
to rerank; RWCL: Random Walk through Concept-
Link; AMAP: the average M AP across the top 20
runs)

Baseline | LS+VM | LS+LM | RWCL
AMAP 0.057 0.068 0.067 0.068

available concepts is small. However, as the lexicon scales
up, taking many concepts into account will bring in more
irrelevant and even noisy ones. The experimental results
show the importance of concept selection, specifically for a
large-scale concept lexicon.

The Impact of the Number of Selected Concepts.
Further, we investigate the following problem: whether the
number of concepts selected for retrieval counts. As shown
in Figure 2, the performances of both models (i.e., Vector
Model and Language Model) degenerate as the selected con-
cepts increase. This observation again demonstrates the im-
portance of concept selection and the significance of QUCOM
when we intend to exploit the concept modality.

5.5 Reranking Results

To evaluate the concept-subspace based reranking frame-
work in a general scenario, we collect the top 20 submitted
runs of automatic search track in TV06, which are used as
our baselines. All runs contain a 1000-shot search result list
for each of the 24 queries. The performances of these runs
have been evaluated by NIST [1], with MAP ranging from
0.087 to 0.041, and an average MAP 0.057.

The performances of the reranked results are given in Ta-
ble 3. Here we adopt the average MAP (AMAP) across the
20 baseline search results to evaluate the overall improve-
ments. It can be seen that “LS+VM” (Linear Summation
with Vector Model to rerank) and RWCL reach the best per-
formance, both enhancing AMAP of the baselines from 0.057
t0 0.068 (a 19.3% gain). And “LS+LM” (Linear Summation
with Language Model to rerank) performs comparably, with
a 17.5% improvement.

We further check the improvements on individual runs, as
shown in Figure 3. Note that the result of “LS+LM” is not
present since it is similar to “LS+VM” and both of them
are under the same reranking framework, i.e., Linear Sum-
mation. We find that most of the original search results are
improved by the reranking methods. And the most signif-



Table 1: Query-Concept Mapping Results (Top 3 concepts per query are listed)

Queries Related Concepts Queries Related Concepts
0173. emergency vehicles Car, Ground_Vehicles, 0185. people reading Furniture, Scene_Text,
in motion Vehicle a newspaper Hospital

0174. tall buildings and
the top story visible

Cityscape, Sky,
Urban_Scenes

Waterscape_Waterfront,
Lakes, Landscape

0186. a natural scene

0175. people leaving or

Vehicle, Ground_Vehicles,

0187. helicopters Mosques, Airplane_Flying,

entering a vehicle Airport in flight Helicopters
0176. soldiers, police, or Emergency_Room, Protesters, 0188. something burning Smoke, Explosion_Fire,
guards escorting a prisoner Sunny with flame visible Exploding_Ordinance

0177. daytime demonstration or

People_Marching,

0189. people dressed in suits, Meeting, Conference_Room

protest with building visible Crowd, Protesters seated, and with newspaper Flags
0178. US Vice President Head_of_State, George_Bush, 0190. at least one person Flags, Us_Flags,
Dick Cheney First_Lay and at least 10 books Politics
0179. Saddam Hussein with Us_Flags, Pedestrian_Zone, 0191. at least one adult person | First_Lady, Armed_Person,
another persons face visible Parking_Lot and at least one child Kitchen

0180. people in uniform
and in formation

Crowd,Protesters,
People_Marching

Old_People, Protesters,
Demonstration_Or_Protest

0192. a greeting by at least
one kiss on the cheek

0181. US President George
W. Bush, Jr. walking

Agent, Head_of_State,
First_Lady

Tower, Smoke_Stack,
Mosques

0193. smokestacks, chimneys, or
cooling towers with smoke

0182. soldiers or police with
weapons and military vehicles

Armed_Person, Rifles
Street_Battle

0194.Condoleeza Rice head_And_Shoulder,

Head_of_State, Suits

0183. water with boats

Lakes,Waterways,

0195. soccer goalposts Soccer, Sports,

or ships Waterscape_Waterfront Lawn
0184. people seated at a Furniture, Cables, 0196. scenes with snow Sky, Snow,
computer with display visible Computer_Or_Television_Screens Ship

O baseline
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Figure 3: The effectiveness of reranking within con-
cept subspace: a per-run analysis

icant improvement comes from the reranking result of the
run 14 (one of the best text baselines in TV06 [22]), leading
to a 50% gain in MAP, from 0.048 to 0.072.

Moreover, we question that the improvements might be

dominated by one or two well performed queries, in which
case the effectiveness of the algorithms is still problematic.
Therefore, a further experiment is conducted to examine the
percentage gain in AP for individual queries (here, the AP
of each query is the average value across the 20 runs). No-
tice that a change in a very low AP, say, from 0.001 to 0.002,
does not make sense in real applications. So those queries
with AP less than 0.01 are removed before evaluation. The
results are reported in Figure 4. It can be seen that almost
all queries benefit from the reranking algorithms. We also
examine those very few queries on which the algorithms do
not perform well, and find that the main loss comes from
the query “0194. Find shots of Condoleeza Rice”. By
re-examining the QUCOM results in Table 1, we find that
the selected concepts for the query, e.g., head_And_Shoulder,
Head_of_State, and Swuits, might be general to some extent,
even though they do have certain connections to the query.
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Figure 4: Percentage gain in AP per query in TV06
(queries with AP less than 0.01 are removed)

This specific result points out a further direction for re-
search.

Time Efficiency. Both the search and reranking pro-
cesses are very efficient, as shown in Table 4. The experi-
ments are all conducted on a standard PC with 3.4 GHz Intel
Pentium-4 CPU and 1 GB memory. On average, it takes
about 0.17 second to search through the corpus (79,484
shots in total). It takes another 15 milliseconds for the Lin-
ear Summation model to rerank a 1000-shot search result
list, and 0.5 second for the Random Walk model. Note that
the performances are obtained via an unoptimzied prototype
system.

Besides, predicting each concept’s presence in each query
image is also on the order of milliseconds and it is a highly
parallel process which can be executed distributively almost
in no time. This advantage makes our method feasible in a
practical search engine where real-time execution is a must.

6. CONCLUSIONS

The main contribution of this work is that we proposed
a text-like paradigm for leveraging the concept modality in




Table 4: Average Search Time per Query
VM | LM | LS | RWCL
time (ms) | 165 | 177 | 15 500

video search, i.e., to find a few related concepts with re-
gard to a given query to generate a concept subspace, to
search in the subspace, and to rerank within the subspace
the search results obtained via multiple modalities. We show
that when treated properly, video search can be conducted
in the concept subspace, just as what we had done with text
documents. Furthermore, this search result can be easily in-
tegrated into the results from other modalities.

In constructing the concept subspace, we employ the c-
tf-idf metric, a tf-idf like scheme, to estimate the relevance
of concepts to the query. Then in the concept search pro-
cess, two retrieval models, i.e., Vector Model and Language
Model are utilized, respectively. And finally, in the rerank-
ing stage, we investigate two algorithms to leverage between
multiple query example images and the baseline search re-
sults, i.e., Linear Summation and Random Walk through
Concept-Link. Comprehensive experiments conducted on
the TRECVID 2006 search data set verify both effective-
ness and efficiency of the proposed paradigm: when used
solely, the concept-subspace based retrieval models reach
the state-of-the-art concept search results, to the best of our
knowledge; when used to rerank the baseline results, it can
improve over the top 20 automatic search runs in TRECVID
2006 by approx. 20%, on the most significant one by approx.
50%, all within 180 milliseconds on a normal PC.

Currently we are exploring new directions to solve the
QUCOM problem which can combine the cues provided by
the text and visual parts of the query, and/or determine
the number of the related concept. Possible further work
includes integrating this work into the query classification
framework, learning the weights for each concept in a prin-
cipled way and intelligently suggesting the users to select
potential relevant concepts.
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